Skip to main content

The Wentaculus: Density Matrix Realism Meets the Arrow of Time

  • Chapter
  • First Online:
Physics and the Nature of Reality

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 215))

Abstract

In this paper, I characterize and elaborate on the “Wentaculus” theory, a new approach to time’s arrow in a quantum universe that offers a unified solution to the problems of what gives rise to the arrow of time and what the ontology of quantum mechanics is.

Dedicated to the memory of Detlef Dürr.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See Albert (2000), Goldstein (2001), Callender (2004), Callender (2011), Lebowitz (2008), North (2011), Wallace (2023), Loewer (2020), Goldstein et al. (2020), and Chen (2023). For some criticisms, see Winsberg (2004); Earman (2006).

  2. 2.

    The Wentaculus is so named because (1) it is inspired by the Mentaculus, and (2) “W” is sometimes used to denote the fundamental density matrix.

  3. 3.

    For GRW-type theories, the density matrix obeys the stochastic modification of the von Neumann equation described in footnote #22.

  4. 4.

    Albert’s thought experiment relies on certain idealizations about momentum eigenstates. We usually require the particle configuration to be guided by square-integrable wave functions or density matrices with finite traces, which do not include momentum eigenstates. However, as Sheldon Goldstein points out to me, the example can be fixed by considering momentum eigenstates defined on a closed circle instead of on an infinite line.

  5. 5.

    In response to Einstein’s worry about the particle in a box of length L with a real-valued wave function \(\psi (x)=A sin \frac{2\pi n x}{L}\), Bohm points out that ordinary Bohmian mechanics does not “contradict any known experimental facts,” because when we carry out a “momentum measurement,” the wave function (of a stationary state) is transformed and the particle starts to move, even though its original momentum is exactly zero.

References

  • D.Z. Albert, The foundations of quantum mechanics and the approach to thermodynamic equilibrium. Br. J. Philos. Sci. 45(2), 669–677 (1994)

    Article  MathSciNet  Google Scholar 

  • D.Z. Albert, Elementary quantum metaphysics, in Bohmian Mechanics and Quantum Theory: An Appraisal. ed. by J.T. Cushing, A. Fine, S. Goldstein (Kluwer Academic Publishers, Dordrecht, 1996), pp.277–84

    Chapter  Google Scholar 

  • D.Z. Albert, Time and Chance (Harvard University Press, Cambridge, 2000)

    Book  Google Scholar 

  • D.Z. Albert, After Physics (Harvard University Press, Cambridge, 2015)

    Book  Google Scholar 

  • D. Z. Albert, Physical laws and physical things (manuscript) (2022)

    Google Scholar 

  • V. Allori, S. Goldstein, R. Tumulka, N. Zanghì, Predictions and primitive ontology in quantum foundations: a study of examples. Br. J. Philos. Sci. 65(2), 323–352 (2013)

    Article  MathSciNet  Google Scholar 

  • J.S. Bell, Quantum mechanics for cosmologists, in Quantum Gravity 2. ed. by C. Isham, R. Penrose, D. Sciama (Clarendon Press, 1981), pp. 611–637

    Google Scholar 

  • D. Bohm, A discussion of certain remarks by Einstein on Born’s probability interpretation of the \(\psi \)-function, in Scientific Papers Presented to Max Born (Hafner, 1953), pp. 13–19

    Google Scholar 

  • C. Callender, Measures, explanations and the past: should ‘special’ initial conditions be explained? Br. J. Philos. Sci. 55(2), 195–217 (2004)

    Article  MathSciNet  Google Scholar 

  • C. Callender, Thermodynamic asymmetry in time, in The Stanford Encyclopedia of Philosophy, ed. by E.N. Zalta (Metaphysics Research Lab, Stanford University, 2011) fall 2011 edition. https://urldefense.com/v3/__. https://plato.stanford.edu/entries/timethermo/__;!!NLFGqXoFfo8MMQ!vprs9m5l_WnJD262YutLOEjrctYKHQxmVxyqMmK3j9jx9VGPMCweSj3h5e1WNlCQJYochYf0E1PwDFXTbQsT4iw7TmlMeLmhMDzemjYoR2fFYoG1$

  • E.K. Chen, Quantum mechanics in a time-asymmetric universe: on the nature of the initial quantum state. Br. J. Philos. Sci. (2018). https://doi.org/10.1093/bjps/axy068

    Article  Google Scholar 

  • E.K. Chen, Quantum states of a time-asymmetric universe: wave function, density matrix, and empirical equivalence. Master’s Thesis, Department of Mathematics, Rutgers University, New Brunswick (2019a). arXiv:1901.08053

  • E.K. Chen, Realism about the wave function. Philos. Compass 14(7) (2019b)

    Google Scholar 

  • E.K. Chen, Time’s arrow in a quantum universe: on the status of statistical mechanical probabilities, in Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature, ed. by V. Allori (World Scientific, Singapore, 2020)

    Google Scholar 

  • E.K. Chen, From time asymmetry to quantum entanglement: the humean unification. Noûs 56, 227–255 (2022)

    Article  MathSciNet  Google Scholar 

  • E.K. Chen, Fundamental nomic vagueness. Philos. Rev. 131(1) (2022b)

    Google Scholar 

  • E.K. Chen, Strong determinism. Philosophers’ Imprint, forthcoming (2022c). arXiv:2203.02886

  • E.K. Chen, The past hypothesis and the nature of physical laws, in The Probability Map of the Universe: Essays on David Albert’s Time and Chance, ed. by B. Loewer, E. Winsberg, B. Weslake (Harvard University Press, 2023)

    Google Scholar 

  • E.K. Chen, R. Tumulka, Uniform probability distribution over all density matrices. Quantum Stud.: Math. Found. 9(2), 225–233 (2022)

    Article  MathSciNet  Google Scholar 

  • E.Y.S. Chua, E.K. Chen, Decoherence, branching, and the Born rule in a mixed-state Everettian multiverse (2023). arXiv:2307.13218

  • D. Dürr, S. Goldstein, R. Tumulka, N. Zanghì, On the role of density matrices in Bohmian mechanics. Found. Phys. 35(3), 449–467 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • D. Dürr, S. Goldstein, N. Zanghì, Quantum equilibrium and the origin of absolute uncertainty. J. Stat. Phys. 67(5–6), 843–907 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • D. Dürr, S. Goldstein, N. Zanghì, Bohmian mechanics and the meaning of the wave function, in Experimental Metaphysics: Quantum Mechanical Studies in honor of Abner Shimony (1996)

    Google Scholar 

  • J. Earman, The “past hypothesis’’: not even false. Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 37(3), 399–430 (2006)

    ADS  MathSciNet  Google Scholar 

  • S. Goldstein, Boltzmann’s approach to statistical mechanics, in Chance in Physics. ed. by J. Bricmont, D. Dürr, M.C. Galavotti, G. Ghirardi, F. Petruccione, N. Zanghì (Springer, Berlin, 2001), pp.39–54

    Chapter  Google Scholar 

  • S. Goldstein, Typicality and notions of probability in physics, in Probability in Physics (Springer, Berlin, 2012), pp. 59–71

    Google Scholar 

  • S. Goldstein, J.L. Lebowitz, C. Mastrodonato, R. Tumulka, N. Zanghì, Approach to thermal equilibrium of macroscopic quantum systems. Phys. Rev. E 81(1), 011109 (2010)

    Article  ADS  Google Scholar 

  • S. Goldstein, J.L. Lebowitz, R. Tumulka, N. Zanghì, Gibbs and Boltzmann entropy in classical and quantum mechanics, in Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. ed. by V. Allori (World Scientific, Singapore, 2020)

    Google Scholar 

  • S. Goldstein, S. Teufel, Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity, in Physics meets Philosophy at the Planck Scale (2001), pp. 275–289

    Google Scholar 

  • J.L. Lebowitz, Time’s arrow and Boltzmann’s entropy. Scholarpedia 3(4), 3448 (2008)

    Article  ADS  Google Scholar 

  • B. Loewer, Determinism and chance. Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 32(4), 609–620 (2001)

    ADS  Google Scholar 

  • B. Loewer, Counterfactuals and the second law, in Causation, Physics, and the Constitution of Reality: Russell’s Republic Revisited, ed. by H. Price, R. Corry (Oxford University Press, 2007)

    Google Scholar 

  • B. Loewer, Two accounts of laws and time. Philos. Stud. 160(1), 115–137 (2012)

    Article  MathSciNet  Google Scholar 

  • B. Loewer, The Mentaculus vision, in Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature, ed. by V. Allori (World Scientific, Singapore, 2020)

    Google Scholar 

  • O. Maroney, The density matrix in the de Broglie-Bohm approach. Found. Phys. 35(3), 493–510 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • C. McCoy, An alternative interpretation of statistical mechanics. Erkenntnis 85(1), 1–21 (2020)

    Article  MathSciNet  Google Scholar 

  • A. Ney, The World in the Wave Function: A Metaphysics for Quantum Physics (Oxford University Press, 2021)

    Google Scholar 

  • J. North, Time in thermodynamics, in The Oxford Handbook of Philosophy of Time (2011), pp. 312–350

    Google Scholar 

  • D. Wallace, The Emergent Multiverse: Quantum Theory According to the Everett Interpretation (Oxford University Press, Oxford, 2012)

    Book  Google Scholar 

  • D. Wallace, Probability and irreversibility in modern statistical mechanics: classical and quantum, in Quantum Foundations of Statistical Mechanics (Oxford University Press, forthcoming, 2016)

    Google Scholar 

  • D. Wallace, The logic of the past hypothesis, in The Probability Map of the Universe: Essays on David Albert’s Time and Chance, ed. by B. Loewer, E. Winsberg, B. Weslake, (Harvard University Press, 2023)

    Google Scholar 

  • E. Winsberg, Can conditioning on the “past hypothesis’’ militate against the reversibility objections? Philos. Sci. 71(4), 489–504 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

For helpful discussions, I thank David Albert, Valia Allori, Jeffrey Barrett, Craig Callender, Eugene Chua, Barry Loewer, Katie Robertson, Simon Saunders, Shelly Yiran Shi, David Wallace, audiences in the Oxford Philosophy of Physics Seminar, the Southern California Philosophy of Physics Group, Density Matrix Realism Workshop (FraMEPhys), and editors of this volume. I have learnt much from Detlef Dürr over the years, and I am grateful for his insights, suggestions, and encouragements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eddy Keming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, E.K. (2024). The Wentaculus: Density Matrix Realism Meets the Arrow of Time. In: Bassi, A., Goldstein, S., Tumulka, R., Zanghì, N. (eds) Physics and the Nature of Reality. Fundamental Theories of Physics, vol 215. Springer, Cham. https://doi.org/10.1007/978-3-031-45434-9_8

Download citation

Publish with us

Policies and ethics