Skip to main content
Log in

Conceptual Problems in the Foundations of Mechanics

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

There has been much research on principles and fundamental concepts of mechanics. Problems concerning the law of inertia, the concepts of force, fictitious force, weight, mass and the distinction between inertial and gravitational mass are addressed in the first part of the present paper. It is argued in the second that the law of inertia is the source of these problems. Consequences drawn from the law explain the metaphysical concept of force, the problematic concept of fictitious force, the nominal definition of weight and the difficulty with defining mass operationally. The core of this connection between the law and these consequences lies in the fact that acceleration is a sufficient condition for force. The experimental basis of the law in the course of its history shows, however, that the law presupposes acceleration necessarily whereas acceleration does not presuppose the law. Therefore, there is no inconvenience in taking acceleration independently of the law. This is enough to bypass those problems. Taking into account how force is measured by force meters and how mass is basically determined, by comparison with the standard mass, a minimal meaning for both concepts of force and mass is established. All this converges with several solutions proposed in the course of history and increases the communicability of mechanics, as outlined in the final part of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Bailin (2002), Kalman (2002, 2010), Zemplén (2007), Doménech et al. (2007), Galili (2009), Malamitsa et al. (2009).

  2. The law of inertia as a special case either of Newton’s second law (Coelho 2007, pp. 957–958) or Hamilton’s Principle (Kalman 2009, pp. 29–30) will not be considered in the present paper but only as a principle of mechanics.

  3. Poincaré (1900), Planck (1916), O’Leary (1947), Eisenbud (1958), Hanson (1958, 1963, 1965), Weinstock (1961), Ellis (1962, 1963, 1965, 1976), Krantz (1973), Ludwig (1985), Hestenes (1986, 1992), Wilczek (2004, 2005), Carson and Rowlands (2005), Rowlands et al. (2007), Matthews (2009), among others.

  4. Bliss and Ogborn (1994), Hijs and Bosch (1995), Jammer (1997, 1999, 2001), Galili and Bar (1992), Galili (1993, 1995, 2001), Roche (2005, 2006), Hecht (2006), Coelho (2010), Kalman (2010), among others.

  5. Voigt (1901, p. 31), Planck (1916, p. 9), Sommerfeld (1947, p. 3), Westphall (1959, p. 21), Alonso and Finn (1992, p. 95), Gerthsen (2006, p. 12), Reineker et al. (2006, p. 33), Greiner (2008, pp. 122–123), among many others.

  6. Planck (1916, p. 8), Nielsen (1935, p. 194), Becker (1954, p. 24), French (1971 p. 164), Budó (1974, p. 32), Bergmann and Schaefer (1990, p. 54), Nolting (2005, p. 118), among others.

  7. The concept of the inertial system was introduced by Lange (1885) and was of mathematical character. He wrote: “The ideal construction of the inertial system will, therefore, be carried out in the following way. Three material points P1, P2, P3 are thrust forward simultaneously from the same point in space and left by themselves. We must be sure that they are not placed on the same straight line and that we link each one of them with whatever fourth point Q in space. The linking lines, which shall, respectively, be called G1, G2, G3 constitute together a figure of three sides. The figure is left to maintain its shape completely rigid […] a system of coordinates, where the figure maintains the position, is an inertial system” (quoted by Coelho 2007, p. 962).

  8. Planck (1916, p. 10), Lenard (1936, p. 43), Westphall (1959, p. 7), Wolfson and Pasachoff (1990, p. 76), Knudsen and Hjorth (1996, p. 28).

  9. The equation F = ma is usually called ‘Newton’s second law’. It was, however, discovered by Euler (Coelho 2010, p. 95). Hence, the expression ‘fundamental equation of dynamics’ or the abbreviation ‘FED’ is used in the present study.

  10. Poincaré (1900) criticized the anthropomorphism in physics (p. 468). O’Leary (1947) writes: “Unnecessary reliance is placed upon intuition and anthropomorphism. In brief, the theory is deficient in rigor and lacking in clarity” (p. 336, see also Weinstock 1961, p. 698).

  11. Daniel (1997, p. 179), Dransfeld et al. (2001, p. 183), Nolting (2005 , p. 128), Fließbach (2007 , p. 40), Tipler and Mosca (2009, p. 164). French (1971) wrote: “To describe such a force as “fictitious” is therefore somewhat misleading […] the term “pseudoforce” is often used. Even this, however, does not do justice to such forces as experienced by someone who is actually in the accelerating frame” (p. 499).

  12. For this reason, Stachel (2007) proposes the concept ‘non-inertial forces’. “To compensate for the use of a non-inertial frame of reference, so-called “inertial forces” appear in the equations of motion (such forces might better be called “non-inertial”)” (p. 1048).

  13. Stachel (2005) writes: “inertial frames cannot be defined independently of inertial motions, which are in turn defined as force-free motions” (p. 24). If it is admitted that each two bodies attract each other, an inertial frame is not available.

  14. The ‘apparent weight’ contrasts with ‘true weight’ which is due to the force of gravity (Hestenes 1986, p. 318; Halliday et al. 1993, p. 105; Ohanian 1994, p. 95; Serway and Beicher 2000, p. 119, among others).

  15. “[…] nothing stands in the way of our arbitrarily establishing the following definition:

    All those bodies are bodies of equal mass, which, mutually acting on each other, produce in each other equal and opposite accelerations.

    […] In the general case we proceed similarly. The bodies A and B receive respectively as the result of their mutual action […] the accelerations \( - \varphi \) und \( + \varphi^{\prime } \) […] We say then, B has \( \varphi /\varphi^{\prime } \) times the mass of A. If we take A as our unit, we assign to that body the mass m which imparts to A m times the acceleration that A in the reaction imparts to it” (1974, p. 266).

  16. "La masse d'un corps est le rapport de deux nombres exprimant combien de fois ce corps et un autre corps choisi arbitrairement et constamment le même, contiennent de parties qui, étant séparées et heurtées deux à deux l'une contre l'autre se communiquent, par le choc, des vitesses opposées égales" (§ 81).

  17. In fact, both authors presupposed something beyond acceleration, insofar as they indicate a reason for it. Saint–Venant explains acceleration by the attraction of material points which make up the bodies (1851, §81). This means that there would be no acceleration if there were no actions between those points. Mach refers to the reciprocal action of two bodies. This means that body A acts on B and B on A and because of this there is acceleration (see Poincaré 1897, p. 735; Kibble and Berkshire 2004, p. 10; Roche 2006, p. 1030).

  18. French (1971, pp. 171–172), Kleppner and Kolenkow (1976, p. 57), Young (1992, pp. 90–91), Kohlrausch (1996, pp. 7–8).

  19. French (1971) points out this difficulty: “Because the measures of force and inertial mass are linked in the single equation F = ma, there is danger of circularity in our definitions” (p. 170).

  20. "Bei einer genaueren physikalischen Diskussion der Gleichung (1.28) hat man die grundsätzlich verschiedene physikalische Herkunft des Massenfaktors m auf beiden Seiten der Gleichung zu berücksichtigen […] Erst die experimentelle Erfahrung zeigt uns die Gleichheit von träger und schwerer Masse" (p. 15).

  21. The implication ‘greater mass implies greater force’ can be written ‘p ⇒ q’. This is equivalent to (−p ∨ q). The negation of this is (p ∧ −q), therefore ‘greater mass and non-greater force’.

  22. "Diese schwere Masse, welche statisch die Feder auszieht, da sie mit der Gravitationskraft G zum Erdmittelpunkt gezogen wird, hat von der Natur dieser Definition her nichts mit der trägen Masse m T zu tun. Letztere war ja allein aus dem Widerstand gegen eine Beschleunigung abgeleitet worden" (p. 92).

  23. "1898 hatte Baron Eötvös eine sehr originelle Idee […] Die Genauigkeit dieses Befundes wurde von Professor R. H. Dicke an der Princeton-Universität noch weiter gesteigert […]" (pp. 94–95).

  24. "In Anbetracht der beobachteten Gleichheit von m s und m T werden auch wir von hier ab nicht mehr zwischen schwerer und träger Masse unterscheiden" (p. 95).

  25. “Quoiqu’il n’y ait point de corps qui conserve éternellement son movement, puisqu’il y a toujours des causes qui le ralentissent peu-à-peu, comme le frottement & la résistance de l’air, cependant nous voyons qu’un corps en movement y persiste d’autant plus long-temps que les causes qui retardent ce movement sont moindres; d’où nous pouvons conclure que le mouvement ne finiroit point, si les causes retardatrices étoient nulles” (p. 9).

  26. “Nous observons sur la terre que les mouvemens se perpétuent plus long-temps, à mesure que les obstacles qui s’y opposent viennent à diminuer; ce qui nous porte à croire que, sans ces obstacles, ils dureroient toujours”(p. 14).

  27. “L’expérience prouve, que si sur une table horizontale parfaitement unie, on place une boule sans lui imprimer aucun mouvement, cette boule restera en repos jusqu’à ce qu’on vienne l’en tirer. […] ce qui a lieu pour un globe placé sur une table horizontale, doit s’étendre à tous les corps possibles, dans toutes les positions possibles, pourvu qu’ils soient dégagés de toute influence étrangère” (pp. 51–52).

  28. “We consider the law to be the probable outcome of most general experience. More strictly, the law is stated as a hypothesis or assumption, which comprises many experiences, which is not contradicted by any experience, but which asserts more than can be proved by definite experience at the present time” (1956, § 315).

  29. “On cite ordinairement l’exemple d’une bille roulant un temps très long sur une table de marbre; mais pourquoi disons-nous qu’elle n’est soumise à aucune force? […] Elle n’est pas cependant plus loin de la Terre que si on la lançait librement dans l’air; et chacun sait que dans ce cas elle subirait l’influence de la pesanteur due à l’attraction de la Terre” (p. 460).

  30. “Every body is subject to the law of conservation of its relative state of motion or rest with respect to all other bodies in space; its actual behavior is then the resultant of all the individual influences” (p. 129).

  31. Concerning the history of the law of inertia in mechanics see Coelho (2007) and concerning Einstein’s criticism and solution see Barbour and Pfister (1995).

  32. Ohanian (1994, p. 81), Kibble and Berkshire (2004, p. 11), Morin (2008, p. 53), Tipler and Mosca (2009, p. 103).

  33. The consequence of the law is (−q ⟹ −p).

    (−q ⟹ −p) ⟺ (−q ∨ −p) ⟺ (−q | p), i.e., ‘acceleration’ is incompatible with ‘free body’. The law of inertia implies, therefore, that acceleration is incompatible with free body.

  34. “En effect, dans une science qui a pour objet les mouvemens et les forces, ce sont les mouvemens qui sont susceptibles d’observation immédiate: les forces sont cachées” (p. 56).

  35. “Die Bewegungen und die Beschleunigungen sind Thatsachen, welche beobachtet werden können […] Wenn man dagegen von Kräften spricht als den Ursachen dieser Bewegungserscheinungen, so weiß man von deren Wesen nichts weiter, als was man eben aus der Beobachtung des Bewegungsvorganges herauslesen kann […] Man kann daher von der Kraft nichts aussagen, was man nicht bereits von der Beschleunigung weiss” (p. 24).

  36. ‘Quantity of matter’ is defined by Newton (1726) (Definitio I) as the product of volume and density. As abbreviations for quantity of matter, Newton used the terms ‘body’ or ‘mass’. In the Principia, the term ‘body’ is more used than ‘mass’ (Steinle 1992, p. 95). Thomson and Tait (1888) still used Newton’s definition, even though they pointed out that this is more a definition of density than of mass (p. 220). However, according to Hertz (1956, p. 7), this definition of mass is not logically permissible. It is logically vicious to define mass as the product of volume and density and density as the quotient of mass and volume. Mach criticized Newton’s definition from a different point of view: the expression ‘quantity of matter’ is not clear enough (1974, pp. 265–270). He defended that mass is to be defined dynamically. Mach’s approach has played a role in the course of the history of the foundations of mechanics (Lindsay 1933; Eisenbud 1958; Weinstock 1961; Hecht 2006; Kalman 2010). In some contemporary textbooks, mass appears associated with quantity of matter (Young 1992, p. 91; Fishbane et al. 1996, p. 113).

  37. “Mais on peut, en général, se dispenser de ces mesurages de vitesse et d’accélération, qui sont délicates et difficiles, et estimer promptement les masses […] par le pesage” (§ 88).

References

  • Alonso, M., & Finn, E. J. (1992). Physics. Wokingham: Addison-Wesley.

    Google Scholar 

  • Ampère, A. -M. (1834). Essai sur la Philosophique des Sciences. Paris: Bachelier.

    Google Scholar 

  • Arons, A. B. (1990). A guide to introductory physics teaching. New York: Wiley.

    Google Scholar 

  • Bailin, S. (2002). Critical thinking and science education. Science & Education, 11, 361–375.

    Article  Google Scholar 

  • Barbour, J. B., & Pfister, H. (Eds.). (1995). Mach’s principle: From Newton’s bucket to quantum gravity, Boston, Basel: Birkhäuser.

  • Becker, R. A. (1954). Introduction to theoretical mechanics. New York, London, Toronto: McGraw-Hill.

    Google Scholar 

  • Benenson, W., Harris, J. W., Stocker, H., & Lutz, H. (2001). Physics, (Trans. from German). New York: Springer.

  • Bergmann, L., & Schaefer, C. (1990). Lehrbuch der Experimentalphysik I: Mechanik, Akustik, Wärme (10th ed.). Berlin, New York: de Gruyter.

    Google Scholar 

  • Bergmann, L., & Schaefer, C. (1998). Lehrbuch der Experimentalphysik I: Mechanik, Akustik, Wärme (11th ed.). Berlin, New York: de Gruyter.

    Google Scholar 

  • Blatt, F. J. (1989). Principles of physics (3rd ed.). Boston, London: Allyn and Bacon.

    Google Scholar 

  • Bliss, J., & Ogborn, J. (1994). Force and Motion from the Beginning. Learning and Instruction, 4, 7–25.

    Article  Google Scholar 

  • Budó, Á. (1974). Theoretische Mechanik (7th ed.). Berlin: VEB Deutscher Verlag der Wissenschaften.

    Google Scholar 

  • Bueche, F. J., & Jerde, D. A. (1995). Principles of physics (6th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Bureau international des poids et mesures (1889). Conférence générale des poids et mesures. Sèvres: Bureau international des poids et mesures.

  • Carnot, L. (1803). Principes fondamentaux de l’équilibre et du mouvement, Paris: chez Deterville: de l’Imprimerie de Crapelet.

  • Carson, R., & Rowlands, S. (2005). Mechanics as the logical point of entry for the enculturation into scientific thinking. Science & Education, 14, 473–493.

    Article  Google Scholar 

  • Coelho, R. L. (2007). The law of inertia: How understanding its history can improve physics teaching. Science & Education, 16, 955–974.

    Article  Google Scholar 

  • Coelho, R. L. (2010). On the concept of force: How understanding its history can improve physics teaching. Science & Education, 19, 91–113.

    Article  Google Scholar 

  • d’Alembert, J. (1758). Traité de Dynamique (2nd ed.). Johnson Reprint Corporation: Paris, New York, London, 1968 (rep.).

  • d’ Inverno, R. (1995). Introducing Einstein’s relativity. Oxford: Oxford University Press.

    Google Scholar 

  • Daniel, H. (1997). Physik I: Mechanik, Wärme, de Gruyter. Berlin, New York: Wellen.

    Google Scholar 

  • Demtröder, W. (2008). Experimentalphysik 1: Mechanik und Wärme (5th ed.). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Descartes, R. (1957) [1647]. Principes de la Philosophie (Paris, 1647). In Oeuvres de Descartes, Vol. IX-2, ed. by Ch. Adam and P. Tannery, Paris, 1957.

  • Doménech, J. L., Gil-Pérez, D., Gras-Marti, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., et al. (2007). Teaching energy issues: A debate proposal for a global reorientation. Science & Education, 16, 43–64.

    Article  Google Scholar 

  • Dransfeld, K., Kienle, P., & Kalvius, G. M. (2001). Physik I: Mechanik und Wärme (9th ed.). München: Oldenbourg.

    Google Scholar 

  • Einstein, A. (1913). Zum gegenwärtigen Stande des Gravitationsproblems. Physikalische Zeitschrift, 14, 1249–1262.

    Google Scholar 

  • Eisberg, R. M., & Lerner, L. P. (1981). Physics: Foundations and applications. Hamburg: McGraw-Hill.

    Google Scholar 

  • Eisenbud, L. (1958). On the classical laws of motion. American Journal of Physics, 26, 144–158.

    Article  Google Scholar 

  • Ellis, B. (1962). Newton’s concept of motive force. Journal of the History of Ideas, 23, 273–278.

    Article  Google Scholar 

  • Ellis, B. (1963). Universal and differential forces. British Journal for the Philosophy of Science, 14, 177–194.

    Article  Google Scholar 

  • Ellis, B. (1965). The origin and nature of Newton’s laws of motion. In R. G. Colodny (Ed.), Beyond the edge of certainty (pp. 29–68). NJ: Englewood Cliffs.

    Google Scholar 

  • Ellis, B. (1976). The existence of forces. Studies in History and Philosophy of Science, 7, 171–185.

    Article  Google Scholar 

  • Faughn, J., Serway, R., Vuille, C., & Bennett, C. (2006). Serway’s college physics. Belmont: Thomson Brooks/Cole.

    Google Scholar 

  • Fishbane, P. M., Gasiorowicz, S., & Thornton, S. T. (1996). Physics for scientists and engineers (Vol. 1). Upper Saddle River NJ: Prentice Hall.

    Google Scholar 

  • Fließbach, T. (2007). Lehrbuch zur theoretischen Mechanik 1: Mechanik (5th ed.). Heidelberg, Berlin, Oxford: Spektrum Akademischer Verlag.

    Google Scholar 

  • French, A. P. (1971). Newtonian mechanics. New York, London: W. W. Norton.

    Google Scholar 

  • Galili, I. (1993). Weight and Gravity: Teachers’ ambiguity and students’ confusion about the concepts. International Journal of Science Education, 15, 149–162.

    Article  Google Scholar 

  • Galili, I. (1995). Interpretation of students’ understanding of the concept of weightlessness. Research in Science Education, 25, 51–74.

    Article  Google Scholar 

  • Galili, I. (2001). Weight versus gravitational force: Historical and educational perspectives. International Journal of Science Education, 23, 1073–1093.

    Article  Google Scholar 

  • Galili, I. (2009). Thought experiments: Determining their meaning. Science & Education, 18, 1–23.

    Article  Google Scholar 

  • Galili, I., & Bar, V. (1992). Motion implies force: Where to expect vestiges of the misconception? International Journal of Science Education, 14, 63–81.

    Article  Google Scholar 

  • Galili, I., & Kaplan, D. (1996). Students’ operation with the concept of weight. Science Education, 80, 457–487.

    Article  Google Scholar 

  • Galili, I., & Tseitlin, M. (2010). Excurse to the history of weight concept: From Aristotle to Newton and then to Einstein (online: http://hipst.eled.auth.gr/hipst_docs/weight.pdf).

  • Gerthsen, C. (2006). Physik (23rd ed.). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Giancoli, D. C. (1991). Principles with applications (3rd ed.). Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Graneau, P., & Graneau, N. (2006). In the grip of the distant universe: The science of inertia. New Jersey: Worlds Scientific.

    Book  Google Scholar 

  • Greiner, W. (2008). Klassische Mechanik I: Kinematik und Dynamik der Punktteilchen Relativität (8th ed.). Frankfurt am Main: Harry Deutsch.

    Google Scholar 

  • Halliday, D., Resnick, R., & Walker, J. (1993). Fundamentals of physics (4th ed.). New York: Wiley.

    Google Scholar 

  • Hamel, G. (1912). Elementare Mechanik. Leipzig, Berlin: Teubner.

    Google Scholar 

  • Hanson, N. R. (1958). Patterns of discovery. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hanson, N. R. (1963). The law of inertia: A philosopher’s touchstone. Philosophy of Science, 30, 107–121.

    Article  Google Scholar 

  • Hanson, N. R. (1965). Newton’s first law: A philosopher’s door into natural philosophy. In R. G. Colodny (Ed.), Beyond the edge of certainty (pp. 6–28). Englewood-Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Hecht, E. (1994). Physics. Pacific Grove, CA: Brooks/Cole Publishing Company.

  • Hecht, E. (2006). There is no really good definition of mass. The Physics Teacher, 44, 40–45.

    Article  Google Scholar 

  • Helmholtz, H. (1911). Vorlesungen über die Dynamik discreter Massenpunkte. Leipzig: J. A. Barth.

    Google Scholar 

  • Hertz, H. (1956). The principles of mechanics presented in a new form (D. E. Jones & J. T. Walley Trans.). With a new introduction by Robert S. Cohen, New York: Dover Publications.

  • Hestenes, D. (1986). New foundations for classical mechanics. Dordrecht, Boston, Lancaster: D. Reidel Pub. Co.

    Book  Google Scholar 

  • Hestenes, D. (1992). Modeling games in the Newtonian world. American Journal of Physics, 60, 732–748.

    Article  Google Scholar 

  • Hewitt, P. G., Suchocki, J., & Hewitt, L. A. (1999). Conceptual physics science (2nd ed.). Menlo Park, California: Addison Wesley Longman.

    Google Scholar 

  • Hijs, T., & Bosch, G. M. (1995). Cognitive effects of science experiments focusing on students’ preconceptions of force: A comparison of demonstrations and small-group practicals. International Journal of Science Education, 17, 311–323.

    Article  Google Scholar 

  • Hofmann, W. (1904). Kritische Beleuchtung der beiden Grundbegriffe der Mechanik: Bewegung und Trägheit und daraus gezogene Folgerungen betreffs der Achsendrehung der Erde und des Foucault’schen Pendelversuchs’ (J. B. Barbour, partial Trans.). in: Barbour 1995, pp. 128–133.

  • Jammer, M. (1997) [1961]. Concepts of mass: In classical and modern physics. NY: Dover Publications

  • Jammer, M. (1999) [1957]. Concepts of force: A study in the foundations of dynamics. Mineola, NY: Dover Publications.

  • Jammer, M. (2001). Concepts of mass in contemporary physics and philosophy. Princeton: Princeton University Press.

    Google Scholar 

  • Kalman, C. (2002). Developing critical thinking in undergraduate courses: A philosophical approach. Science & Education, 11, 83–94.

    Article  Google Scholar 

  • Kalman, C. (2009). A role for experiment in using the law of inertia to explain the nature of science: A comment on Lopes Celho. Science & Education, 18, 25–31.

    Article  Google Scholar 

  • Kalman, C. (2010). On the concept of force: A comment on Lopes Coelho. Science & Education (online first).

  • Kibble, T. W. B., & Berkshire, F. H. (2004). Classical mechanics (5th ed.). London: Imperial College Press.

    Google Scholar 

  • Kleppner, D., & Kolenkow, R. J. (1976). An introduction to mechanics. Boston: McGraw Hill.

    Google Scholar 

  • Knudsen, J. M., & Hjorth, P. G. (1996). Elements of Newtonian mechanics (2nd ed.). Berlin: Springer.

    Book  Google Scholar 

  • Kohlrausch, F.(1996). Praktische Physik: zum Gebrauch für Unterricht, Forschung und Technik, 24th edn. V. Kose & S. Wagner (Eds.), Teubner, Stuttgart.

  • Koyré, A. (1966). Études Galiléennes. Paris: Hermann.

    Google Scholar 

  • Krantz, D. (1973). Fundamental measurement of force and Newton’s first and second laws of motion. Philosophy of Science, 40, 481–495.

    Article  Google Scholar 

  • Kuypers, F. (2010). Klassische Mechanik (9th ed.). Weinheim: Wiley.

    Google Scholar 

  • Lange, L. (1885). Nochmals über das Beharrungsgesetz. Philosophische Studien, 2, 539–545.

    Google Scholar 

  • Laplace, P. S. (1799). Traité de Mécanique Céleste, Vol. I. Paris. Culture et Civilisation, Brussell, 1967 (rep.).

  • Lenard, P. (1936). Deutsche Physik 1: Einleitung und Mechanik. München: Lehmanns Verl.

    Google Scholar 

  • Lindsay, R. B. (1933). Physical mechanics. New York: D. van Nostrand Co.

  • Lüders, K., & Pohl, R. O. (2004). Pohls Einführung in die Physik (19th ed.). Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Ludwig, G. (1985). Einführung in die Grundlagen der Theoretischen Physik I: Raum, Zeit, Mechanik (3rd ed.). Braunschweig, Wiesbaden: Vieweg.

    Google Scholar 

  • Mach, E. (1868). Ueber die Definition der Masse. Repertorium für Experimental-Physik, 4, 355–359.

    Google Scholar 

  • Mach, E. (1974). The science of mechanics: A critical and historical account of its development (T. J. McCormack, Trans.) (6th ed.). La Salle, Illinois: The Open Court Pub. Co.

  • Malamitsa, K., Kasoutas, M., & Kokkotas, P. (2009). Developing Greek primary school students’ critical thinking through an approach of science teaching which incorporates aspects of history of science. Science & Education, 18, 457–468.

    Article  Google Scholar 

  • Matthews, M. R. (2009). Teaching the philosophical and worldviews components of science. Science & Education, 18, 697–728.

    Article  Google Scholar 

  • Morin, D. (2008). Introduction to classical mechanics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Newton, I. (1726). Isaac Newton’s Philosophiae naturalis Principia Mathematica (3rd ed.), Koyré & I. B. Cohen (Eds.) Harvard University Press, 1972.

  • Newton, I. (1999). The principia: Mathematical principles of natural philosophy (I. B. Cohen & A. Whitman new Trans.). Berkeley: University of California Press.

  • Niedrig, H. (1992). Physik. Berlin, Heidelberg: Springer.

    Book  Google Scholar 

  • Nielsen, J. (1935). Vorlesungen über elementare Mechanik (W. Fenchel, Trans.). Berlin: Springer.

  • Nolting, W. (2005). Grundkurs: Theoretische Physik 1: Klassische Mechanik (7th ed.). Braunschweig, Wiesbaden: Vieweg.

    Google Scholar 

  • O’Leary, A. J. (1947). The teaching of dynamics in an introductory physics course. American Journal of Physics, 15, 336–339.

    Article  Google Scholar 

  • Ohanian, H. C. (1994). Principles of physics. New York, London: W.W.Norton and Company.

    Google Scholar 

  • Planck, M. (1916). Einführung in die Allgemeine Mechanik. Leipzig: S. Hirzel.

    Google Scholar 

  • Platrier, C. (1954). Mécanique Rationnelle. Dunod, Paris: Tome I.

    Google Scholar 

  • Poincaré, H. (1897). Les Idées de Hertz sur la Mécanique. Revue Générale des Sciences, 8, 734–743.

    Google Scholar 

  • Poincaré, H. (1900) [1901]. ‘Sur les Principes de la Mécanique’, In I er Congrès international de Philosophie, Tome 3. Paris, (pp. 457–494). Kraus Reprint Limited, Nendeln, Liechtenstein, 1968 (rep.).

  • Reineker, P., Schulz, M., & Schulz, B. M. (2006). Theoretische Physik I: Mechanik. Weinheim: Wiley.

    Google Scholar 

  • Roche, J. (2005). What is mass? European Journal of Physics, 26, 225–242.

    Article  Google Scholar 

  • Roche, J. (2006). What is momentum. European Journal of Physics, 27, 1019–1036.

    Article  Google Scholar 

  • Rowlands, S., Graham, T., Berry, J., & McWilliam, P. (2007). Conceptual changes through the lens of Newtonian mechanics. Science & Education, 16, 21–42.

    Article  Google Scholar 

  • Saint-Venant, A. J. C. B. (1851). Principes de Mécanique fondés sur la Cinématique. Paris: Bachelier.

    Google Scholar 

  • Schaefer, C. (1962). Einführung in die Theoretische Physik (6th ed., Vol. 1). Berlin: de Gruyter.

    Google Scholar 

  • Scobel, W., Lindström, G., & Langkau, R. (2002). Mechanik, Fluiddynamik und Wärmelehre (2nd ed.). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Serway, R. A., & Faughn, J. (1985). College physics. Philadelphia: Saunders College Pub.

    Google Scholar 

  • Serway, R. A., Beicher, R. J., & Jeweet, J. W. (2000). Physics for scientists and engineers (5th ed.). Philadelphia: Saunders College Publishing.

    Google Scholar 

  • Sommerfeld, A. (1947). Vorlesungen über theoretische Physik I: Mechanik (3rd ed.). Leipzig: Akad. Verl. Geest & Portig.

    Google Scholar 

  • Stachel, J. (2005). Development of the concepts of space, time and space-time from Newton to Einstein. In A. Ashtekar (Ed.), 100 years of relativity/space-time structure: Einstein and beyond (pp. 3–36). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Stachel, J. (2007). The Story of Newstein or: Is Gravity just another pretty force? In J. Renn, M. Janssen, & M. Schemmel (Eds.), The genesis of general relativity, Bd. 250 (pp. 1041–1078). Berlin: Springer.

    Chapter  Google Scholar 

  • Steinle, F. (1992). Was ist Masse? Newtons Begriff der Materiemenge. Philosophia Naturalis, 29, 94–117.

    Google Scholar 

  • Stephanie, H., & Kluge, G. (1995). Theoretische Mechanik: Punkt- und Kontinuumsmechanik. Heidelberg, Berlin: Spektrum Akademischer Verlag.

    Google Scholar 

  • Strauch, D. (2009). Classical mechanics: An introduction. Berlin, Heidelberg: Springer.

    Google Scholar 

  • Thomson, W., & Tait, P. G. (1888). Treatise on natural philosophy. Cambridge: University Press.

    Google Scholar 

  • Tipler, P. A., & Mosca, G. (2009). Physik für Wissenschaftler und Ingenieure (M. Basler, R. Dohmen, C. Heinisch, A. Schleitzer & M. Zillgitt, Trans.) (6th ed.). Heidelberg: Spektrum Akademischer Verlag.

  • Voigt, W. (1901). Elementare Mechanik. Leipzig: Veit & Comp.

    Google Scholar 

  • Weber, R. (2007). Physik, Teil I: Klassische Physik–Experimentelle und theoretische Grundlagen. Wiesbaden: Teubner.

    Google Scholar 

  • Weinstock, R. (1961). Laws of classical motion. What’s F? What’s m? What’s a? American Journal of Physics, 29, 698–702.

    Article  Google Scholar 

  • Westphall, W. H. (1959). Physik (20th ed.). Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Wilczek, F. (2004). Whence the force of F = ma? I: Culture shock. Physics Today, 57N10, 11–12.

    Article  Google Scholar 

  • Wilczek, F. (2005). Whence the force of F = ma? III: Cultural diversity. Physics Today, 58N7, 10–11.

    Article  Google Scholar 

  • Wolfson, R., & Pasachoff, J. M. (1990). Physics. Glenview, Ill: Scott.

    Google Scholar 

  • Young, H. D. (1992). University physics (8th ed.). Reading, Massachussets: Addison-Wesley Pub. Co.

    Google Scholar 

  • Young, H. D., Freedman, R. A., & Sears, F. (2004). Sears and Zemansky’s university physics (11th ed.). San Francisco: Addison-Wesley.

    Google Scholar 

  • Zemplén, G. (2007). Conflicting agendas: Critical thinking versus science education in the international baccalaureate theory of knowledge course. Science & Education, 16, 167–196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Lopes Coelho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coelho, R.L. Conceptual Problems in the Foundations of Mechanics. Sci & Educ 21, 1337–1356 (2012). https://doi.org/10.1007/s11191-010-9336-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-010-9336-x

Keywords

Navigation