Skip to main content

Advertisement

Log in

On the Concept of Energy: Eclecticism and Rationality

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

In the theory of heat of the first half of the nineteenth century, heat was a substance. Mayer and Joule contradicted this thesis but developed different concepts of heat. Heat was a force for Mayer and a motion for Joule. Both Mayer and Joule determined the mechanical equivalent of heat. This result was, however, justified in accordance with those concepts of heat. Mayer’s characterisation of force reappears in the very common textbook definition ‘energy cannot be created or destroyed but only transformed’ and his theory led to a phenomenological approach to energy. Joule and Thomson’s concept of heat led to a mechanistic approach to energy and to the common definition ‘energy is the capacity of doing work’. One and the same term ‘energy’ subsumed these two approaches. The problematic concept of energy, energy as a substance, appears then as a result of an eclectic development of the concept. Another approach, which appeared in the 1860s, is directly based on the mechanical equivalent of heat and can be characterized by the use of ‘principle of equivalence’ instead of ‘principle of energy conservation’. Unlike the others, this approach, which has been lost, poses no problems with the concept of energy. The problems with the energy concept as to the kind of phenomena dealt with in the present paper can, however, be overcome, as we shall see, in distinguishing between that which comes from experiments and that which is an interpretation of the experimental results within a conceptual framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. See, for instance, Chalmers (1963, p. 43), Bueche (1972, p. 95), Hudson and Nelson (1982, p. 95), Hänsel and Neumann (1993, p. 222), Cutnell and Johnson (1997, p. 177), Dransfeld, Kienle and Kalvius (2001, p. 109), Young and Freedman (2004, p. 264).

  2. The need of supporting students’ logical and critical thinking has been pointed out by several authors (Bailin 2002; Kalman 2002, 2011; Doménech et al. 2007; Matthews 2009; Galili 2009; Malamitsa, Kasoutas and Kokkotas 2009).

  3. Atkins (1986, p. 233), Hänsel and Neumann (1993, p. 222), Böge and Eichler (2002, p. 83), Nolting (2002, p. 148).

  4. See, for instance, Sexl (1981), Duit (1981, 1987), Hicks (1983), Bauman (1992), Chrisholm (1992), Arons (1999), Galili and Lehavi (2006), Doménech et al. (2007), Rizaki and Kokkotas (2009), Papadouris and Constantinou (2011).

  5. See, for instance, Breithaupt (1999, p. 157), Tipler (2000, p. 129), Serway and Beichner (2000, p. 183).

  6. See, for example, Lehrman (1973), Sexl (1981, p. 287), Duit (1981, p. 293), Hicks (1983), Kemp (1984, p. 234), Doménech et al. (2007, p. 49).

  7. If we do not know what energy is, then it is not to be expected that students will grasp it. Empirical research has shown their difficulties with the concept (Watts 1983, Duit 1986, Nicholls and Ogborn 1993, Trumper 1990, 1991, Cotignola et al. 2002, Barbosa and Borges 2006, de Berg 2008, Svedholm and Lindeman 2012, among others).

  8. According to Bunge (2000), the general concept of energy belongs in metaphysics (Bunge 2000, p. 461).

  9. Planck (1921 [1887]), Mach (1896), Helm (1898), Haas (1909), Kuhn (1959), Theobald (1966), Breger (1982), Schirra (1989), Smith (1998), Guedj (2000), Coelho (2006), Coopersmith (2010). On Mayer: Weyrauch (1890), Riehl (1900), Hell (1914), Timerding (1925), Lindsay (1973), Mittasch (1940), Heimann (1976), Caneva (1993); On Joule: Fox (1969), Forrester (1975), Cardwell (1989); on Colding: Dahl (1963); on Helmholtz: Elkana (1974), Heimann (1974), Bevilacqua (1983, 1993), Ordónez (1996).

  10. Indeed, ‘mass’ was not the term used by Descartes and ‘velocity’ is not a vector in his theory of motion.

  11. This contradicted the science of that time, according to which ‘weight’ alone was the cause of falling. Mayer argues however that weight is not enough for falling because without height there is no fall. Thus, he justified that weight · height is ‘fall force’ (Mayer 1842, p. 236).

  12. Mayer did not distinguish between weight and mass.

  13. Mayer quoted this proposition in Latin, “causa aequat effectum” (Mayer 1842, p. 233).

  14. Helmholtz proposed to take ½ mv 2 as vis viva, instead of mv 2, which he did throughout his paper.

  15. Rumford (1799) had experimentally shown that heat has no effect on the weight of bodies (Rumford 1799, p. 194).

  16. Equations of this form support the calculation of the mechanical equivalent of heat (see Joule 1884 [1843, 1845], 1850).

  17. Beyond these results, there are three more that the author does not consider capable of being valuable (Colding 1972, p. 12).

  18. Helmholtz’s approach to electrical and magnetic phenomena will not be considered in the present paper (see Bevilacqua 1983, 1993).

  19. Boltzmann (1896a, b), Planck (1896), see also Ostwald (1896) and Helm (1896).

  20. It is true that the meaning of energy has changed and energy has become a substance, which Mayer’s force was not, but this alteration was not a consequence of a discovery of a substance with those properties. If it were, energy would belong to the primary level.

  21. If the question is not well-posed, then there is no reason for keeping it. Hertz presented a similar solution for a similar question. Concerning the question of what force is, he wrote: “the answer which we want is not really an answer to this question. It is not by finding out more and fresh relations and connections that it can be answered; but by removing the contradictions existing between those already known, and thus perhaps by reducing their number. When these painful contradictions are removed, the question as to the nature of force will not have been answered; but our minds, no longer vexed, will cease to ask illegitimate questions” (Hertz 1899, p. 8).

References

  • Arons, A. B. (1999). Development of energy concepts in introductory physics courses. American Journal of Physics, 67, 1063–1067.

    Article  Google Scholar 

  • Atkins, K. (1986). Physik: die Grundlagen des physikalischen Weltbildes (2nd ed.). German Trans. Berlin, New York: de Gruyter.

  • Bailin, S. (2002). Critical thinking and science education. Science & Education, 11, 361–375.

    Article  Google Scholar 

  • Barbosa, J. P., & Borges, A. T. (2006). O Entendimento dos Estudantes sobre Energia no início do Ensino Médio. Caderno Brasileiro de Ensino de Física, 23, 182–217.

    Google Scholar 

  • Bauman, R. P. (1992). Physics that textbook writers usually get wrong. Phys Teacher, 30, 264–269.

    Article  Google Scholar 

  • Bergmann, L., & Schaefer, C. (1998). Lehrbuch der Experimentalphysik I (11th ed.). Berlin, New York: de Gruyter.

    Google Scholar 

  • Berthollet, C. L. (1809). Notes sur divers objects. Mémoires de Physique et de Chimie de la Société d’Arcueil. Tome sécond. Paris (Rep. New York, Johnson).

  • Bevilacqua, F. (1983). The principle of conservation of energy and the history of classical electromagnetic theory. Pavia: La Goliardica Pavese.

    Google Scholar 

  • Bevilacqua, F. (1993). Helmholtz’ Ueber die Erhaltung der Kraft. In D. Cahan (Ed.), Hermann von Helmholtz and the foundations of the nineteenth-century science (pp. 291–333). Berkeley, Los Angeles: University of California Press.

    Google Scholar 

  • Böge, A., & Eichler, J. (2002). Physik (9th ed.). Braunschweig, Wiesbaden: Vieweg.

  • Boltzmann, L. (1896a). Ein Wort der Mathematik an die Energetik. Annalen der Physik, 57, 39–71.

    Article  Google Scholar 

  • Boltzmann, L. (1896b). Zur Energetik. Annalen der Physik, 58, 595–598.

    Article  Google Scholar 

  • Breger, H. (1982). Die Natur als arbeitende Maschine: Zur Entstehung des Energiebegriffs in der Physik 1840–1850. Frankfurt am Main, NY: Campus Verlag.

    Google Scholar 

  • Breithaupt, J. (1999). Physics. Brasingstoke: Macmillan.

    Google Scholar 

  • Bueche, F. (1972). Principles of physics (2nd ed.). New York: Mc Graw Hill.

    Google Scholar 

  • Bunge, M. (2000). Energy: Between physics and metaphysics. Science & Education, 9, 457–461.

    Article  Google Scholar 

  • Caneva, K. L. (1993). Robert Mayer and the conservation of energy. Princeton: Princeton University Press.

    Google Scholar 

  • Cardwell, D. S. L. (1989). James Joule. A biography. Manchester: Manchester University Press.

    Google Scholar 

  • Carnot, S. (1824). Réflexions sur la puissance motrice du feu. Paris: Bachelier. (Reimp. Éditions J. Gabay, 1990).

  • Çengel, Y., & Boles, M. (2002). Thermodynamics. Boston: Mc Graw Hill.

    Google Scholar 

  • Chalmers, B. (1963). Energy. New York: Academic Press.

    Google Scholar 

  • Chrisholm, D. (1992). Some energetic thoughts. Phys Educ, 27, 215–220.

    Google Scholar 

  • Coelho, R. L. (2006). O Conceito de Energia: Passado e Sentido. Rocha Cabral Institute, Opus. Series, Vol. II, Aachen: Shaker Verlag.

  • Coelho, R. L. (2009). On the concept of energy: How understanding its history can improve physics teaching. Science & Education, 18, 961–983.

    Article  Google Scholar 

  • Colding, L. (1856). Nogle Sætninger om Kræfterne. Oversigt over det Kgl Danske Videnskabernes Selskabs Forhandlinger, 8, 1–20.

    Google Scholar 

  • Colding, L. (1972). Theses Concerning Force. In P. Dahl (Ed.), Ludvig colding and the conservation of energy principle. New York: Johnson Reprint Corporation.

    Google Scholar 

  • Colladon, D., & Sturm, C. (1828). Ueber die Zusammendrückbarkeit der Flüssigkeiten. Annalen der Physik, 88, 161–197.

    Article  Google Scholar 

  • Coopersmith, J. (2010). Energy, the subtle concept: The discovery of Feynman’s blocks from Leibniz to Einstein. Oxford: Oxford University Press.

    Google Scholar 

  • Cotignola, M. I., Bordogna, C., Punte, G., & Cappannini, O. M. (2002). Difficulties in learning thermodynamic concepts: Are they linked to the historical development of this field? Science & Education, 11(3), 279–291.

    Article  Google Scholar 

  • Cutnell, J., & Johnson, K. (1997). Physics. New York: Wiley.

    Google Scholar 

  • Dahl, P. F. (1963). Colding and the conservation of energy. Centaurus, 8, 174–188.

    Article  Google Scholar 

  • Davy, H. (1839 [1799]). The collected papers of sir Humphrey Davy. In J. Davy (Ed.), Early miscellaneous papers (Vol. 2). London: Smith, Elder and CO. Cornhill.

  • de Berg, K. C. (2008). The concepts of heat and temperature, the problem of determining the content for the construction of an historical case study which is sensitive to nature of science issues and teaching-learning issues. Science & Education, 17, 75–114.

    Article  Google Scholar 

  • Descartes, R. (1973 [1644]). Principia Philosophiae, Paris. In Ch. Adam & P. Tannery (Eds.), Oeuvres de Descartes (vol. VIII-1). Paris: J. Vrin.

  • Doménech, J. L., Gil-Pérez, D., Gras-Marti, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., et al. (2007). Teaching of energy issues, a debate proposal for a global reorientation. Science & Education, 16, 43–64.

    Article  Google Scholar 

  • Dransfeld, K., Kienle, P., & Kalvius, G. M. (2001). Physik I: Mechanik und Wärme (9th ed.). München, Wien: Oldenbourg.

    Google Scholar 

  • Duit, R. (1981). Understanding energy as a conserved quantity—Remarks on the article by R. U. Sexl. European Journal of Science and Education, 3, 291–294.

    Article  Google Scholar 

  • Duit, R. (1986). Der Energiebegriff im Physikunterricht. Kiel: IPN, Abt. Didaktik d. Physik.

    Google Scholar 

  • Duit, R. (1987). Should energy be illustrated as something quasi-material? International Journal of Science Education, 9, 139–145.

    Article  Google Scholar 

  • Einstein, A. (1989 [1905]). Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? In Einstein 1989 (pp. 312–315).

  • Einstein, A. (1989 [1907]). Über die vom Relativitätsprinzip gefordert Trägheit der Energie. In Einstein 1989 (pp. 414–428).

  • Einstein, A. (1989 [1909]). Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung. In Einstein 1989 (pp. 564–583).

  • Einstein, A. (1989). The collected papers of Albert Einstein. The Swiss years: writings 1900-1909 (Vol. 2). In John Stachel (Ed.). Princeton: Princeton University Press.

  • Elkana, Y. (1974). Discovery of the conservation of energy. London: Hutchinson.

    Google Scholar 

  • Feynman, R., Leighton, R. B. & Sand, M. (1966). The Feynman lectures on physics (2nd ed.). London: Addison-Wesley.

  • Forrester, J. (1975). Chemistry and the conservation of energy: The work of James Prescott Joule. Studies in History and Philosophy of Science, 6, 273–313.

    Article  Google Scholar 

  • Fox, R. (1969). James Prescott Joule (1818-1889). In John North (Ed.), Mid-nineteenth-century scientists (pp. 72–103). Oxford: Pergamon Press.

    Google Scholar 

  • Galilei, G. (1965). Le Opere di Galileo Galilei (Vol. VIII, X). Firenze, G. Barbèra.

  • Galili, I. (2009). Thought experiments: Determining their meaning. Science & Education, 18, 1–23.

    Article  Google Scholar 

  • Galili, I., & Lehavi, Y. (2006). Definitions of physical concepts: A study of physics teachers’ knowledge and views. International Journal of Science Education, 28, 521–541.

    Article  Google Scholar 

  • Gehler, J. (1825–1845). Gehlers Physikalisches Wörterbuch (Vol. 1–11). Leipzig: Schwickert.

  • Guedj, M. (2000). L’émergence du principe de conservation de l’énergie et la construction de la thermodynamique (Diss.). Paris.

  • Haas, A. (1909). Die Entwicklungsgeschichte des Satzes von der Erhaltung der Kraft. Wien: Hölder.

    Google Scholar 

  • Haldat. (1807). Recherches sur la chaleur produite par le frottement. Journal de Physique de Chime et d’Histoire Naturelle, 65, 213–222.

  • Hänsel, H., & Neumann, W. (1993). Physik: Mechanik und Wärme. Heidelberg: Spektrum, Akad. Verl.

    Google Scholar 

  • Heimann, H. (1974). Helmholtz and Kant: The metaphysical Foundations of Ueber die Erhaltung der Kraft. Studies in History and Philosophy of Science, 5, 205–238.

    Article  Google Scholar 

  • Heimann, H. (1976). Mayer’s concept of “Force”: The “Axis” of a new science of physics. Historical Studies in the Physical Sciences, 7, 277–296.

    Article  Google Scholar 

  • Hell, B. (1914). Robert Mayer. Kantstudien, 19, 221–248.

    Google Scholar 

  • Helm, G. (1896). Zur Energetik. Annalen der Physik und Chemie, 57, 646–659.

    Article  Google Scholar 

  • Helm, G. (1898). Die Energetik nach der geschichtlichen Entwicklung. Leipzig: Veit & C.

    Google Scholar 

  • Helmholtz, H. (1882). Wissenschaftliche Abhandlungen I. Leipzig: Barth.

    Google Scholar 

  • Hertel, P. (2007). Theoretische Physik. Berlin: Springer.

  • Hertz, H. (1899). The principles of mechanics presented in a new form. English trans. London: Macmillan and Co.

    Google Scholar 

  • Hicks, N. (1983). Energy is the capacity to do work—or is it? The Physics Teacher, 21, 529–530.

    Article  Google Scholar 

  • Hiebert, E. N. (1971). The energetics controversy and the new thermodynamics. In D. H. D. Roller (Ed.), Perspectives in the history of science and technology (pp. 67–86). Norman: University of Oklahoma Press.

    Google Scholar 

  • Hudson, A., & Nelson, R. (1982). University physics. New York: H. B. Jovanovich.

    Google Scholar 

  • Iltis, C. (1971). Leibniz and the Vis Viva Controversy. Isis, 62, 21–35.

    Article  Google Scholar 

  • Joule, J. P. (1850). On the mechanical equivalent of heat. Philosophical Transactions of the Royal Society of London, 140, 61–82.

    Article  Google Scholar 

  • Joule, J. P. (1884). The scientific papers of James Prescott Joule. London: The Physical Society (Reimp. Londres: Dawsons, 1963).

  • Kalman, C. (2002). Developing critical thinking in undergraduate courses: A philosophical approach. Science & Education, 11, 83–94.

    Article  Google Scholar 

  • Kalman, C. (2011). Enhancing students’ conceptual understanding by engaging science text with reflective writing as a hermeneutical circle. Science & Education, 20, 159–172.

    Article  Google Scholar 

  • Keller, F. J., Gettys, W. E., & Skove, M. J. (1993). Physics: Classical and modern (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Kemp, H. R. (1984). The concept of energy without heat and work. Physics Education, 19, 234–240.

    Article  Google Scholar 

  • Kuhn, T. S. (1959). Energy conservation as an example of simultaneous discovery. In M. Clagget (Ed.), Critical problems in the history of science (pp. 321–356). Madison: Wisconsin University Press.

    Google Scholar 

  • Lancor, R. (2012). Using metaphor theory to examine conceptions of energy in biology, chemistry, and physics. Science & Education,. doi:10.1007/s11191-0129535-8.

    Google Scholar 

  • Lehrman, R. (1973). Energy is not the ability to do work. American Journal of Physics, 60, 356–365.

    Google Scholar 

  • Leibniz, G. W. (1686). Brevis Demonstratio erroris memorabilis Cartesii, et aliorum circa legem naturae, secundum quam volunt a Deo eandem semper quantitatem motus conservari, qua et in re mechanica abutuntur. Acta Eruditorum, 161–163, in Leibniz, G. W. (1971). Mathematische Schriften, Vol. VI, C. I. Gerhardt (Ed.), Hildesheim: G. Olms Verlag.

  • Lindsay, R. (1973). Julius Robert Mayer. Oxford: Pergamon Press.

    Google Scholar 

  • Lodge, O. (1879). An attempt at a systematic classification of the various forms of energy. Philosophical Magazine, 8, 277–286.

    Article  Google Scholar 

  • Lodge, O. (1885). On the identity of energy: In connection with Mr Poynting’s paper on the transfer of energy in an electromagnetic field; and the two fundamental forms of energy. Philosophical Magazine, 19, 482–494.

    Article  Google Scholar 

  • Lodge, O. (1893). The foundation of dynamics. In Proceedings of the physical society of London XII (pp. 289–336).

  • Mach, E. (1896). Principien der Wärmelehre. Historisch-kritisch entwickelt. Leipzig: J. A. Barth.

    Google Scholar 

  • Malamitsa, K., Kasoutas, M., & Kokkotas, P. (2009). Developing greek primary school students’ critical thinking through an approach of science teaching which incorporates aspects of history of science. Science & Education, 18, 457–468.

    Article  Google Scholar 

  • Matthews, M. R. (2009). Teaching the philosophical and worldviews components of science. Science & Education, 18, 697–728.

    Article  Google Scholar 

  • Maxwell, J. (1873). Theory of heat (3rd ed.). Connecticut: Greenwood.

    Google Scholar 

  • Mayer, J. R. (1842). Bemerkungen über die Kräfte der unbelebten Natur. Annalen der Chemie und Pharmacie, 42, 233–240.

    Article  Google Scholar 

  • Mayer, J. R. (1845). Die organische Bewegung in ihrem Zusammenhange mit dem Stoffwechsel. Heilbronn. (In Mayer, 1978).

  • Mayer, J. R. (1851). Bemerkungen über das mechanische Aequivalent der Wärme. Heilbronn. (In Mayer 1978).

  • Mayer, J. R. (1978). Die Mechanik der Wärme: Sämtliche Schriften. In H. P. Münzenmayer & Stadtarchiv Heilbronn (Eds.). Heilbronn: Stadtarchiv Heilbronn.

  • Mittasch, A. (1940). Julius Robert Mayers Kausalbegriff. Berlin: Springer.

    Book  Google Scholar 

  • Müller, J. & Pouillet, C. (1926). Lehrbuch der Physik (Vol. 3, Part I, 11th ed.). Braunschweig: Vieweg.

  • Muncke, G. W. (1829). Handbuch der Naturlehre I. Winter, Heidelberg: Universitäts-Buchhandlung C.

    Google Scholar 

  • Muncke, G. W. (1830). Imponderabilien. In Gehler (1825–1845, Vol. 5, Part 2, pp. 765–770).

  • Nicholls, G., & Ogborn, J. (1993). Dimensions of children’s conceptions of energy. International Journal of Science Education, 15, 73–81.

    Article  Google Scholar 

  • Nolting, W. (2002). Theoretische Physik 4 (5th ed.). Wiesbaden: Vieweg.

  • Ordónez, J. (1996). The story of a non-discovery: Helmholtz and the conservation of energy. In G. Munévar (Ed.), Spanish studies in the philosophy of science (pp. 1–18). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Ostwald, W. (1896). Zur Energetik. Annalen der Physik, 58, 154–165.

    Article  Google Scholar 

  • Ostwald, W. (1912 [1908]). Die Energie (2nd ed.). Leipzig: J. A. Barth.

  • Papadouris, N., & Constantinou, C. P. (2011). A philosophically informed proposal on the topic of energy students aged 11–14. Science & Education, 20, 961–979.

    Article  Google Scholar 

  • Planck, M. (1896). Gegen die neuere Energetik. Annalen der Physik, 57, 72–78.

    Article  Google Scholar 

  • Planck, M. (1921 [1887]). Das Prinzip der Erhaltung der Energie (4th ed.). Leipzig, Berlin: Teubner.

  • Poincaré, H. (1892). Cours de Physique Mathématique, 3. Thermodynamique, Leçons professés pendant le premier semestre 1888–1889/Paris, J. Blondin.

  • Poincaré, H. (1897). Les idées de Hertz sur la mécanique. Revue générale des Sciences, VIII, 734–743.

    Google Scholar 

  • Poynting, J. H. (1884). On the transfer of energy in the electromagnetic field. Philosophical Transactions of the Royal Society, 175, 343–361.

    Article  Google Scholar 

  • Preston, T. (1919). The theory of heat (3rd ed.). R. Cotter (Ed.). London: Macmillan.

  • Rankine, W. (1853). On the general law of the transformation of energy. Philosophical Magazine, 34, 106–117.

    Google Scholar 

  • Rankine, W. (1855). Outlines of the science of energetics. Edinburgh New Philosophical Journal, 2, 120–141.

    Google Scholar 

  • Riehl, A. (1900). Robert Mayers Entdeckung und Beweis des Energieprincipes. In C. Sigwart & B. Erdmann (Eds.) Philosophische Abhandlungen. Tubingen, Freiburg i. B. & Leipzig: J.C.B. Mohr.

  • Rizaki, A., & Kokkotas, P. (2009). The use of history and philosophy of science as a core for a socioconstructivist teaching approach of the concept of energy in primary education. Science & Education,. doi:10.1007/s11191-009-9213-7.

    Google Scholar 

  • Rumford, B. C. (1798). An inquiry concerning the Source of the Heat which is excited by Friction. Philosophical Transactions of the Royal Society of London, 88, 80–102.

    Google Scholar 

  • Rumford, B. C. (1799). An inquiry concerning the weight ascribed to heat. Philosophical Transactions of the Royal Society of London 89, 179–194.

    Google Scholar 

  • Schirra, N. (1989). Entwicklung des Energiebegriffs und seines Erhaltunskonzepts. Giessen: Justus-Liebig-Universität.

  • Serway, R. A., & Beichner, R. J. (2000). Physics for scientists and engineers with modern physics (5th ed.). Philadelphia PA: Saunders College Publishing.

    Google Scholar 

  • Sexl, R. U. (1981). Some observations concerning the teaching of the energy concept. International Journal of Science Education, 3, 285–289.

    Google Scholar 

  • Smith, C. (1998). The science of energy: A cultural history of energy physics in Victorian Britain. London: The Athlone Press.

    Google Scholar 

  • Suckow, G. A. (1813). Anfangsgründe der Physik und Chemie nach den neuesten Entdeckungen. Leipzig: Augsburg.

    Google Scholar 

  • Svedholm, A. M., & Lindeman, M. (2012). Healing, mental energy in the physics classroom: Energy conceptions and trust in complementary and alternative medicine in grade 10–12 students. Science & Education,. doi:10.1007/s11191-012-9529-6.

    Google Scholar 

  • Theobald, D. (1966). The concept of energy. London: Spon.

    Google Scholar 

  • Thomson, W. (1848). On an absolute thermometric scale founded on Carnot’s theory of the motive power of heat. Philosophical Magazine, 33, 313–317.

    Google Scholar 

  • Thomson, W. (1849). An account of Carnot’s theory of the motive power of heat; with numerical results deduced from Regnault’s experiments of steam. Transactions of the Royal Society of Edinburgh, 16, 541–574.

    Article  Google Scholar 

  • Thomson, W. (1851a). On the dynamical theory of heat; with numerical results deduced from Mr Joule’s Equivalent of a Thermal Unit, and M. Regnault’s Observations on Steam. Transactions of the R. S. of Edinburgh (1853), 20, 261–298.

    Google Scholar 

  • Thomson, W. (1851b). On the dynamical theory of heat. on the quantities of mechanical energy contained in different states, as to temperature and density. Transactions of the R. S. of Edinburgh (1853), 20, 475–482.

    Google Scholar 

  • Thomson, W. (1852). On a universal tendency in nature to the dissipation of mechanical energy. Proceedings of the Royol Socity of Edinburgh, 3, 139–142.

    Google Scholar 

  • Thomson, W. (1884). Mathematical and physical papers II. Cambridge: Cambridge University Press.

    Google Scholar 

  • Timerding, H. (1925). Robert Mayer und die Entdeckung des Energiegesetzes. Leipzig & Wien: Deuticke.

    Google Scholar 

  • Tipler, P. (2000). Physik. German Trans. Heidelberg: Spektrum Akad. Verl.

  • Trumper, R. (1990). Being constructive, an alternative approach to the teaching of the energy concept—Part one. International Journal of Science Education, 12, 343–354.

    Article  Google Scholar 

  • Trumper, R. (1991). Being constructive, an alternative approach to the teaching of the energy concept—Part two. International Journal of Science Education, 13, 1–10.

    Article  Google Scholar 

  • Verdet, E. (1868–1872). Oeuvres d’É. Verdet, Vol. 7. Prudhon & Violle (eds.). Paris: Masson.

  • Watts, D. M. (1983). Some alternative views of energy. Physics Education, 18, 213–217.

    Article  Google Scholar 

  • Westphal, W. (1970). Physik (25/26th ed.). Berlin: Springer.

  • Weyrauch, J. (1890). Robert Mayer, der Entdecker des Princips von der Erhaltung der Energie. Stuttgart.

  • Young, H. & Freedman, R. (2004). Sears and Zemansky’s University Physics (11th ed.). San Francisco: P. Addison-Wesley.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Lopes Coelho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coelho, R.L. On the Concept of Energy: Eclecticism and Rationality. Sci & Educ 23, 1361–1380 (2014). https://doi.org/10.1007/s11191-013-9634-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-013-9634-1

Keywords

Navigation