Skip to main content
Log in

Measurement theory for physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A highly abstracted theory of measurement is synthesized from classical measurement theory, fuzzy set theory, generalized information theory, and predicate calculus. The theory does not require specific truth value concepts, nor does it specify what subsets of the reals can be observed, thus avoiding the usual fundamental difficulties. Problems such as the definition of systems, the significance of observations, numerical scales and observables, etc. are examined. The general logico-algebraic approach to quantum/classical physics is justified as a special case of measurement theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Cyranski, Measurement, Theory, and Information,Inf. Contr., to appear.

  2. J. Pfanzagl,Theory of Measurement (Physica-Verlag, Wurzburg-Wien, 1971).

    Google Scholar 

  3. D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky,Foundations of Measurement (Academic, 1971), Vol. I.

  4. J. M. Jauch,Foundations of Quantum Mechanics (Addison-Wesley, 1968).

  5. C. Piron,Foundations of Quantum Physics (Benjamin, 1976).

  6. N. J. Nilsson,Problem-Solving Methods in Artificial Intelligence (McGraw-Hill, 1971).

  7. J. A. Goguen,J. Math. Anal. Appl. 18, 145 (1967).

    Google Scholar 

  8. S. D. Drell,Physics Today 31(6), 23 (1978).

    Google Scholar 

  9. S. T. Ali and E. Prugovecki,J. Math. Phys. 18, 219 (1977).

    Google Scholar 

  10. G. Birkhoff,Lattice Theory 3rd ed., (Am. Math. Soc., 1973).

  11. A. Kaufmann,Introduction to the Theory of Fuzzy Subsets (Academic, 1975), Vol. 1.

  12. S. C. Kleene,Introduction to Metamathematics (North-Holland, 1971).

  13. J. F. Cyranski,Found. Phys. 8, 805 (1978).

    Google Scholar 

  14. M. M. Gupta, G. N. Saridis, and B. R. Gaines, eds.Fuzzy Automata and Decision Processes (North-Holland, 1977).

  15. C. Møller,The Theory of Relativity (Oxford, 1952).

  16. W. R. Tunnicliffe,Proc. London Math. Soc. 3, 13 (1974).

    Google Scholar 

  17. R. J. Greechie and S. P. Gudder, inThe Logico-Algebraic Approach to Quantum Mechanics, C. A. Hooker, ed. (Reidel, 1975), p. 545.

  18. C. A. Hooker, ed.,The Logico-Algebraic Approach to Quantum Mechanics (Reidel, 1975).

  19. M. D. MacLaren,Pac. J. Math. 14, 597 (1964).

    Google Scholar 

  20. S. Watanabe,Inf. Contr. 15, 1 (1969).

    Google Scholar 

  21. J. Sallantin,Journees Inform.-Questionnaires-Reconnaissance (Structures de l'Information Publications, C.N.R.S, Paris, 1977).

    Google Scholar 

  22. F. Gallone and A. Mania,Ann. Inst. H. Poincaré XVA, 37 (1971).

    Google Scholar 

  23. J. F. Cyranski, to appear.

  24. F. Maeda and S. Maeda,Theory of Symmetric Lattices (Springer-Verlag, 1970).

  25. G. A. Fraser,Trans. Am. Math. Soc. 217, 183 (1976).

    Google Scholar 

  26. F. Treves,Topological Vector Spaces, Distributions and Kernels (Academic, 1967).

  27. A. Zecca,J. Math. Phys. 19, 1482 (1978).

    Google Scholar 

  28. B. de Finetti,Probability, Induction and Statistics, The art of guessing (Wiley, 1972).

  29. A. De Luca and S. Termini,J. Math. Anal. App. 40, 373 (1972).

    Google Scholar 

  30. B. L. Wellman,Technical Descriptive Geometry (McGraw-Hill, 1957).

  31. R. S. Ingarden and A. Kossakowski,Ann. Phys. 89, 451 (1975).

    Google Scholar 

  32. J. Sallantin, inThéories de l'Information, J. Kampé de Fériet and C. F. Picard, eds. (Springer-Verlag, 1974), p. 76.

  33. J. Sallantin,Séminaires sur les Questionnaires (Structures de l'Information Publications, CNRS, Paris, 1977), pp. 141, 153.

    Google Scholar 

  34. G. Comyn and J. Losfeld,Journées Lyonnaises des Questionnaires (Structures de l'Information Publications, CNRS, 1976), p. 45.

  35. R. Carnap,Logical Foundations of Probability (Chicago, 1950).

  36. K. H. Norwich,Bull. Math. Biol. 39, 453 (1977).

    Google Scholar 

  37. K. Friedman and A. Shimony,J. Stat. Phys. 3, 381 (1971).

    Google Scholar 

  38. J. F. Cyranski,Found. Phys. 8, 493 (1978).

    Google Scholar 

  39. J. F. Cyranski, Entropy in Classical and Quantum Physics, submitted for publication.

  40. E. T. Jaynes,Phys. Rev. 106, 620 (1957);108, 171 (1957).

    Google Scholar 

  41. J. Kampé de Fériet, inThéories de l'Information, J. Kampé de Fériet and C. F. Picard, eds. (Springer-Verlag, 1974), p. 1.

  42. S. Guiasu,Information Theory and Applications (McGraw-Hill, 1977).

  43. V. S. Varadarajan,Geometry of Quantum Theory (D. van Nostrand, 1968), Vol. 1.

  44. M. E. Munroe,Introduction to Measure and Integration (Addison-Wesley, 1953).

  45. A. M. Gleason, inThe Logico-Algebraic Approach to Quantum Mechanics, C. A. Hooker, ed. (Reidel, 1975), p. 123.

  46. J. von Neumann,Mathematical Foundations of Quantum Mechanics (Princeton Univ. Press, 1955).

  47. M. Jammer,The Philosophy of Quantum Mechanics (Wiley, 1974).

  48. P. R. Halmos,Algebraic Logic (Chelsea, 1962).

  49. B. Carter,Gen. Rel. Grav. 1, 349 (1971).

    Google Scholar 

  50. J. L. Park and H. Margenau,Int. J. Theor. Phys. 1, 211 (1968).

    Google Scholar 

  51. J. von Neumann,Ann. Math. 33, 587 (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyranski, J.F. Measurement theory for physics. Found Phys 9, 641–671 (1979). https://doi.org/10.1007/BF00711102

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00711102

Keywords

Navigation