Skip to main content
Log in

Extensible Embeddings of Black-Hole Geometries

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Removing a black hole conic singularity by means of Kruskal representation is equivalent to imposing extensibility on the Kasner–Fronsdal local isometric embedding of the corresponding black hole geometry. Allowing for globally non-trivial embeddings, living in Kaluza–Klein-like M 5 × S 1 (rather than in standard Minkowski M 6 ) and parametrized by some wave number k, extensibility can be achieved for apparently “forbidden” frequencies ω in the range ω 1 (k) ≤ ω ≤ ω 2 (k). As k → 0, ω 12 (0) → ωH (e.g., ωH = 1/4M in the Schwarzschild case) such that the Hawking–Gibbons limit is fully recovered. The various Kruskal sheets are then viewed as slices of the Kaluza–Klein background. Euclidean k discreteness, dictated by imaginary time periodicity, is correlated with flux quantization of the underlying embedding gauge field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Kramer, H. Stephani, E. Herlt, and M. MacCallum, in Exact Solutions of Einstein Field Equations (Cambridge University Press, Cambridge, 1980); H. F. Goenner, in General Relativity and Gravitation, A. Held, ed. (Plenum, New York, 1980), Vol. 1; M. D. Maia and E. M. Monte, gr-qc/9501031.

    Google Scholar 

  2. Y. Ne'eman and J. Rosen, Ann. Phys. 31, 391 (1965).

    Google Scholar 

  3. T. Regge and C. Teitelboim, Proceedings, Marcel Grossman Meeting (Oxford University Press, Oxford, 1977), pp. 77; S. Deser, F. A. E. Pirani, and D. C. Robinson, Phys. Rev. D 14, 3301 (1976).

    Google Scholar 

  4. R. Penrose, Rev. Mod. Phys. 37, 215 (1965); A. Friedman, Rev. Mod. Phys. 37, 201, (1965); J. Rosen, Rev. Mod. Phys. 37, 204 (1965); C. Frondsdal, Rev. Mod. Phys. 37, 221 (1965); D. W. Joseph, Rev. Mod. Phys. 37, 225 (1965); Y. Ne'eman, Rev. Mod. Phys. 37, 227 (1965); M. D. Maia, J. Math. Phys. 16, 1689 (1975).

    Google Scholar 

  5. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 136 (1983); M. Visser, Phys. Lett. B 159, 22 (1985).

    Google Scholar 

  6. M. Janet, Ann. Soc. Pol. Mater. 5 (1928); E. Cartan, Ann. Soc. Pol. Mater. 6, 1 (1928).

  7. R. Greene, Mem. Am. Math. Soc. 97 (1970).

  8. E. Kasner, Am. J. Math. 43, 126, 130 (1921).

    Google Scholar 

  9. C. Fronsdal, Phys. Rev. 116, 778 (1959).

    Google Scholar 

  10. M. D. Kruskal, Phys. Rev. 119, 1743 (1960); G. Szekeres, Pub. Math. Deb. 7, 285 (1960).

    Google Scholar 

  11. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2752 (1977).

    Google Scholar 

  12. J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, A., Paz, U. Extensible Embeddings of Black-Hole Geometries. Foundations of Physics 30, 785–794 (2000). https://doi.org/10.1023/A:1003793128801

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003793128801

Keywords

Navigation