Skip to main content
Log in

Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom–Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Storms, E.: Science of Low Energy Nuclear Reaction: A Comprehensive Compilation of Evidence and Explanations about Cold Fusion. World Scientific Publishing Company (2007)

  2. Srinivasan, M., Miley, G., Storms, E.: Low-energy nuclear reactions: transmutations. In: Krivit, S.B., Lehr, J.H., Kingery, T.B. (eds.) Nuclear Energy Encyclopedia, pp. 503–539. Wiley (2011). URL http://onlinelibrary.wiley.com/doi/10.1002/9781118043493.ch43/summary

  3. Fock, V.: Die Eigenzeit in der klassischen und in der Quantenmechanik. Phys. Z. Sowjetunion 12, 404 (1937)

    Google Scholar 

  4. Stueckelberg, E.: La signification du temps propre en mécanique ondulatoire. Helv. Phys. Acta 14, 322 (1941)

    MathSciNet  Google Scholar 

  5. Stueckelberg, E.: Remarque à propos de la création de paires de particules en théorie de la relativité. Helv. Phys. Acta 14, 588 (1941)

    MathSciNet  Google Scholar 

  6. Lacki, J., Ruegg, H., Wanders, G.: E.C.G. Stueckelberg, An Unconventional Figure of Twentieth Century Physics: Selected Scientific Papers with Commentaries. Springer (2008)

  7. Feynman, R.P.: Mathematical formulation of the quantum theory of electromagnetic interaction. Phys. Rev. 80(3), 440 (1950). doi:10.1103/PhysRev.80.440

  8. Horwitz, L.P., Piron, C.: Relativistic dynamics. Helv. Phys. Acta 46(3), 316 (1973). URL http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4355335

  9. Reuse, F.: On classical and quantum relativistic dynamics. Found. Phys. 9(11–12), 865 (1979). doi:10.1007/BF00708697

  10. Fanchi, J.R.: Parametrized Relativistic Quantum Theory. Springer GmbH (1993).

  11. Horwitz, L.P., Lavie, Y.: Scattering theory in relativistic quantum mechanics. Phys. Rev. D 26(4), 819 (1982). doi:10.1103/PhysRevD.26.819

    Article  ADS  MathSciNet  Google Scholar 

  12. Horwitz, L., Shnerb, N.: Second quantization of the stueckelberg relativistic quantum theory and associated gauge fields. Found. Phys. 28(10), 1509 (1998). doi:10.1023/A:1018841000237. URL http://www.springerlink.com/content/rw725423p4l33516/abstract/

  13. Land, M.C., Horwitz, L.P.: The Lorentz force and energy-momentum for off-shell electromagnetism. Found. Phys. Lett. 4(1), 61 (1991). doi:10.1007/BF00666417

    Article  Google Scholar 

  14. Land, M.C.: Pre-maxwell electrodynamics. Found. Phys. 28(9), 1479 (1998). doi:10.1023/A:1018813429428

    Article  MathSciNet  Google Scholar 

  15. Seidewitz, E.: Spacetime path formalism for massive particles of any spin. Ann. Phys. 324(2), 309 (2009). doi:10.1016/j.aop.2008.10.007. URL http://www.sciencedirect.com/science/article/pii/S0003491608001668

    Google Scholar 

  16. Aharonovich, I., Horwitz, L.P.: Radiation-reaction in classical off-shell electrodynamics. I. The above mass-shell case. J. Math. Phys. 53(3), 032902 (2012). doi:10.1063/1.3694276. URL http://jmp.aip.org/resource/1/jmapaq/v53/i3/p032902_s1?bypassSSO=1

  17. Burakovsky, L., Horwitz, L.: Equilibrium relativistic mass distribution. Phys. A 201(4), 666 (1993). doi:10.1016/0378-4371(93)90135-Q. URL http://www.sciencedirect.com/science/article/pii/037843719390135Q

    Google Scholar 

  18. Burakovsky, L., Horwitz, L.P.: Galilean limit of equilibrium relativistic mass distribution. J. Phys. A 27(8), 2623 (1994). doi:10.1088/0305-4470/27/8/003. URL http://iopscience.iop.org/0305-4470/27/8/003

    Google Scholar 

  19. Burakovsky, L., Horwitz, L.P.: Mass-Proper Time Uncertainty Relation in a Manifestly Covariant Relativistic Statistical Mechanics. ArXiv High Energy Physics-Theory e-prints, p. 4106 (1996). URL http://adsabs.harvard.edu/abs/1996hepth4106B

  20. Greenberger, D.M.: Theory of particles with variable Mass. I. Formalism. J. Math. Phys. 11(8), 2329 (1970). doi:10.1063/1.1665400. http://jmp.aip.org/resource/1/jmapaq/v11/i8/p2329_s1?isAuthorized=no

  21. Greenberger, D.M.: Theory of particles with variable mass. II. Some physical consequences. J. Math. Phys. 11(8), 2341 (1970). doi:10.1063/1.1665401. URL http://jmp.aip.org/resource/1/jmapaq/v11/i8/p2341_s1?isAuthorized=no

  22. Greenberger, D.M.: Some useful properties of a theory of variable mass particles. J. Math. Phys. 15(4), 395 (1974). doi:10.1063/1.1666658. URL http://link.aip.org/link/?JMP/15/395/1&Agg=doi

  23. Greenberger, D.M.: Wavepackets for particles of indefinite mass. J. Math. Phys. 15(4), 406 (1974). doi:10.1063/1.1666659. URL http://link.aip.org/link/?JMP/15/406/1&Agg=doi

  24. Corben, H.C.: Relativistic quantum theory of particles with variable mass I. Proc. Natl. Acad. Sci. USA 48(9), 1559 (1962)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Corben, H.C.: Relativistic quantum theory of particles with variable mass, II. Proc. Natl. Acad. Sci. USA. 48(10), 1746 (1962). URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC221034/. PMID: 16591007 PMCID: PMC221034

  26. Fanchi, J.R.: Review of invariant time formulations of relativistic quantum theories. Found. Phys. 23(3), 487 (1993). doi:10.1007/BF01883726

    Article  ADS  MathSciNet  Google Scholar 

  27. Adler, S.L.: Quantum theory as an emergent phenomenon: the statistical mechanics of matrix models as the precursor of quantum field theory. Quantum Theory as an Emergent Phenomenon: The Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory. Cambridge University Press (2004)

  28. ’t Hooft, G.: The Free-Will Postulate in Quantum Mechanics. arxiv.org 0707.4568 (2007). doi:10.1063/1.2823751. URL http://arxiv.org/abs/0707.4568. AIPConf.Proc. 957:154-163

  29. ’t Hooft, G.: Determinism beneath quantum mechanics. Quo Vadis quantum mechanics? In: Elitzur, A.C., Dolev, S., Kolenda, N. (eds.) The Frontiers Collection, pp. 99–111. Springer, Berlin (2005). URL http://www.springerlink.com/content/t545r734304254q3/

  30. ’t Hooft, G.: Entangled quantum states in a local deterministic theory. arxiv.org 0908.3408 (2009). URL http://arxiv.org/abs/0908.3408

  31. Weinberg, S.: Collapse of the State Vector. arXiv.org 1109.6462 (2011). URL http://arxiv.org/abs/1109.6462

  32. Koonin, S.E., Nauenberg, M.: Calculated fusion rates in isotopic hydrogen molecules. Nature 339(6227), 690 (1989). doi:10.1038/339690a0. URL http://www.nature.com/nature/journal/v339/n6227/abs/339690a0.html

  33. Fleischmann, M., Pons, S., Hawkins, M.: Electrochemically induced nuclear fusion of deuterium. J. Electroanal. Chem. 261(2), 301–308 (1989). URL http://www.ftp.nic.funet.fi/pub/doc/Fusion/fp.ps

    Google Scholar 

  34. Leggett, A.J., Baym, G.: Exact upper bound on barrier penetration probabilities in many-body systems: Application to “cold fusion”. Phys. Rev. Lett. 63(2), 191 (1989). doi:10.1103/PhysRevLett.63.191

    Google Scholar 

  35. Leggett, A.J., Baym, G.: Can solid-state effects enhance the cold-fusion rate?. Nature 340(6228), 45 (1989). doi:10.1038/340045a0. URL http://www.nature.com/nature/journal/v340/n6228/abs/340045a0.html

  36. Czerski, K., Huke, A., Biller, A., Heide, P., Hoeft, M., Ruprecht, G.: Enhancement of the electron screening effect for d + d fusion reactions in metallic environments. Europhys. Lett. (EPL) 54(4), 449 (2001). doi:10.1209/epl/i2001-00265-7. URL http://iopscience.iop.org/epl/i2001-00265-7

  37. Czerski, K., Huke, A., Heide, P., Ruprecht, G.: The \({}^{2}\)H(d, p)\({}^{3}\)H reaction in metallic media at very low energies. Europhys. Lett. 68, 363 (2004). doi:10.1209/epl/i2004-10209-3. URL http://adsabs.harvard.edu/abs/2004EL68.363C

  38. Czerski, K., Huke, A., Heide, P., Ruprecht, G.: Experimental and theoretical screening energies for the \({}^{2}\)H(d, p)\({}^{3}\)H reaction in metallic environments. In: The 2nd International Conference on Nuclear Physics in Astrophysics, ed. by Z. Fülöp, G. Gyürky, E. Somorjai (Springer, Berlin Heidelberg, 2006), pp. 83–88. URL http://www.springerlink.com/content/k740562323673840/abstract/

  39. Czerski, K., Huke, A., Martin, L., Targosz, N., Blauth, D., Górska, A., Heide, P., Winter, H.: Measurements of enhanced electron screening in d+d reactions under UHV conditions. Journal of Physics G: Nucl. Part. Phys. 35(1), 014012 (2008). doi:10.1088/0954-3899/35/1/014012. URL http://iopscience.iop.org/0954-3899/35/1/014012

    Google Scholar 

  40. Czerski, K.: Enhanced electron screening and nuclear mechanism of cold fusion. in ICCF-15, vol. 15, pp. 197–202. ENEA, Rome, Italy (2009). URL http://www.enea.it/it/produzione-scientifica/edizioni-enea/2012/proceedings-iccf-15-international-conference-on-condensed-matter-nuclear-science

  41. Tsyganov, E.N.: Cold nuclear fusion. Phys. At. Nucl. 75(2), 153 (2012). doi:10.1134/S1063778812010140

    Article  MathSciNet  Google Scholar 

  42. Atzeni, S., Meyer-ter Vehn, J.: The Physics of Inertial Fusion:BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter. J. Meyer-ter Vehn, The Physics of Inertial Fusion:BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter. Oxford University Press (2004).

  43. Nagel, D.J.: Scientific overview of ICCF15. Infinite Energy 88, 21 (2009). URL http://www.infinite-energy.com/images/pdfs/nageliccf15.pdf

  44. Widom, A., Larsen, L.: Ultra low momentum neutron catalyzed nuclear reactions on metallic hydride surfaces. Eur. Phys. J. C 46(1), 107 (2006). doi:10.1140/epjc/s2006-02479-8

    Article  ADS  Google Scholar 

  45. Konopinski, E.J.: What the electromagnetic vector potential describes. Am. J. Phys. 46(5), 499 (1978). doi:10.1119/1.11298. URL http://link.aip.org/link/?AJP/46/499/1&Agg=doi

  46. Calkin, M.G.: Linear momentum of quasistatic electromagnetic fields. Am. J. Phys. 34(10), 921 (1966). doi:10.1119/1.1972282. URL http://link.aip.org/link/?AJP/34/921/1&Agg=doi

  47. Aguirregabiria, J.M., Hernández, A., Rivas, M.: Linear momentum density in quasistatic electromagnetic systems. Eur. J. Phys. 25(4), 555 (2004). doi:10.1088/0143-0807/25/4/010

    Article  MATH  Google Scholar 

  48. Szalewicz, K., Morgan, J.D., Monkhorst, H.J.: Fusion rates for hydrogen isotopic molecules of relevance for “cold fusion”. Phys. Rev A 40(5), 2824 (1989). doi:10.1103/PhysRevA.40.2824

    Article  ADS  Google Scholar 

  49. Rabinowitz, M.: High temperature superconductivity and cold fusion. Modern Phys. Lett. B 4, 233 (1990). doi:10.1142/S0217984990000301. URL http://adsabs.harvard.edu/abs/1990MPLB4.233R

  50. Jackson, J.: Catalysis of nuclear reactions between hydrogen isotopes by \(\mu \)-mesons. Phys. Rev. 106(2), 330 (1957). doi:10.1103/PhysRev.106.330. URL http://adsabs.harvard.edu/abs/1957PhRv.106.330J

  51. Evans, A.B.: 4-Space Dirac theory and LENR. J. Condens. Matter Nucl. Sci. 2, 7 (2009)

    Google Scholar 

  52. Evans, A.B.: Four-space formulation of Dirac’s equation. Found. Phys. 20(3), 309 (1990). doi:10.1007/BF00731695

    Article  ADS  MathSciNet  Google Scholar 

  53. Fearing, H.W., Scherer, S.: Field transformations and simple models illustrating the impossibility of measuring off-shell effects. Phys. Rev. C 62(3), 034003 (2000). doi:10.1103/PhysRevC.62.034003

    Article  ADS  Google Scholar 

  54. Tyutin, I.V.: Once again on the equivalence theorem. Phys. At. Nucl. 65(1), 194 (2002). doi:10.1134/1.1446571

    Article  MathSciNet  Google Scholar 

  55. Newton, T.D., Wigner, E.P.: Localized states for elementary systems. Rev. Mod. Phys. 21(3), 400 (1949). doi:10.1103/RevModPhys.21.400

    Google Scholar 

  56. Wightman, A.S.: On the localizability of quantum mechanical systems. Rev. Mod. Phys. 34(4), 845 (1962). doi:10.1103/RevModPhys.34.845

    Article  ADS  MathSciNet  Google Scholar 

  57. Alvarez, E.T.G., Gaioli, F.H.: Feynman’s proper time approach to QED. Found Phys. 28(10), 1529 (1998). doi:10.1023/A:1018882101146

    Article  MathSciNet  Google Scholar 

  58. Gorelik, V.S.: Effective mass of photons and the existence of heavy photons in photonic crystals. Phys. Scr. 2010(T140), 014046 (2010). doi:10.1088/0031-8949/2010/T140/014046

    Article  Google Scholar 

  59. Gorelik, V.S.: Bound and dark photonic states in globular photonic crystals. Acta Physica Hungarica A 26(1–2), 37 (2006). doi:10.1556/APH.26.2006.1-2.6

    ADS  Google Scholar 

  60. Gorelik, V.S.: Optics of globular photonic crystals. Quantum Electron. 37(5), 409 (2007). doi:10.1070/QE2007v037n05ABEH013478. URL http://www.turpion.org/php/paper.phtml?journal_id=qe&paper_id=13478

  61. John, S., Wang, J.: Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms. Phys. Rev. Lett. 64(20), 2418 (1990). doi:10.1103/PhysRevLett.64.2418

    Google Scholar 

  62. André, P.J.J.-M.: Effective mass of photons in a one-dimensional photonic crystal. Phys. Scr. 84(3), 035708 (2011). doi:10.1088/0031-8949/84/03/035708

    Article  ADS  Google Scholar 

  63. Weinberg, S.: Nuclear forces from chiral lagrangians. Phys. Lett. B 251(2), 288 (1990). doi:10.1016/0370-2693(90)90938-3. URL http://65.54.113.26/Publication/18408213/nuclear-forces-from-chiral-lagrangians

  64. Weinberg, S.: Phenomenological lagrangians. Phys. A 96(1–2), 327 (1979). doi:10.1016/0378-4371(79)90223-1. URL http://www.sciencedirect.com/science/article/pii/0378437179902231

  65. Epelbaum, E.: Nuclear forces from chiral effective field theory: a primer. arXiv:1001.3229 (2010). URL http://arxiv.org/abs/1001.3229

  66. Land, M.C., Horwitz, L.P.: Off-Shell Quantum Electrodyn (1996). URL http://arxiv.org/abs/hepth/9601021 arXiv:hepth/9601021

  67. Coleman, S.: Fate of the false vacuum: semiclassical theory. Phys. Rev. D 15(10), 2929 (1977). doi:10.1103/PhysRevD.15.2929

    Article  ADS  Google Scholar 

  68. Tomsovic, S., Ullmo, D.: Chaos-assisted tunneling. Phys. Rev. E 50(1), 145 (1994). doi:10.1103/PhysRevE.50.145

    Article  ADS  Google Scholar 

  69. Hagelstein, P.L.: Resonant tunneling and resonant excitation transfer. In: Proceedings, ICCF-12, pp. 871–886. Cambridge, MA, USA (2005). doi:10.1142/9789812701510_0079. URL http://adsabs.harvard.edu/abs/2005cmns.conf.871H

  70. Li, X.Z.: Overcoming of the gamow tunneling insufficiencies by maximizing the damp-matching resonant tunneling. Czechoslovak J. Phys. 49(6), 985 (1999). doi:10.1023/A:1021485221050

    Article  ADS  Google Scholar 

  71. Grifoni, M., Hänggi, P.: Driven quantum tunneling. Phys. Rep. 304(5–6), 229 (1998). doi:10.1016/S0370-1573(98)00022-2. URL http://www.sciencedirect.com/science/article/pii/S0370157398000222

  72. Saad, D., Horwitz, L.P., Arshansky, R.I.: Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics. Found. Phys. 19(10), 1125–1149 (1989). doi:10.1007/BF00731876

    Article  ADS  MathSciNet  Google Scholar 

  73. Horwitz, L.P., Arshansky, R.I., Elitzur, A.C.: On the two aspects of time: The distinction and its implications. Found. Phys. 18(12), 1159 (1988). doi:10.1007/BF01889430

    Article  ADS  Google Scholar 

  74. Land, M.C., Horwitz, L.P.: Green’s functions for off-shell electromagnetism and spacelike correlations. Found. Phys. 21(3), 299 (1991). doi:10.1007/BF01883636

    Article  ADS  MathSciNet  Google Scholar 

  75. Land, M.C.: Particles and events in classical off-shell electrodynamics. Found. Phys. 27(1), 19 (1997). doi:10.1007/BF02550153

    Article  ADS  MathSciNet  Google Scholar 

  76. Land, M.: Abraham-Lorentz-Dirac equation in 5D Stuekelberg electrodynamics. J. Phys. Conf. Ser. 330, 012015 (2011). doi:10.1088/1742-6596/330/1/012015. URL http://iopscience.iop.org/1742-6596/330/1/012015

  77. Horwitz, L.: Spin, angular momentum and spin-statistics for a relativistic quantum many-body system. J. Phys. A 46(3), 035305 (2013). URL http://stacks.iop.org/1751-8121/46/i=3/a=035305

    Google Scholar 

  78. Horwitz, L.P., Arshansky, R.: On relativistic quantum theory for particles with spin 1/2. J. Phys. A 15(12), L659 (1982). doi:10.1088/0305-4470/15/12/002. URL http://iopscience.iop.org/0305-4470/15/12/002

  79. Fanchi, J.: Resolution of the Klein paradox for spin-1/2 particles. Found. Phys. 11(5), 493 (1981). doi:10.1007/BF00727077. URL http://www.springerlink.com/content/v3211wt465115256/abstract/

  80. Piron, C., Reuse, F.: Relativistic dynamics for the spin 1/2 particle. Helv. Phys. Acta 51, 146–176 (1978)

    MathSciNet  Google Scholar 

  81. Horwitz L.P., Piron, C., Reuse, F.: Relativistic dynamics for the Spin 1/2 particle. Helv. Phys. Acta 48(4), 546–548; 48(4) (1975). URL http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4018859

  82. Proca, A.: J. Phys. Rad. 7, 347–353 (1936)

    Article  Google Scholar 

  83. Lee, T.D., Yang, C.N.: Theory of charged vector memons interacting with the electromagnetic field. Phys. Rev. 128(2), 885 (1962). doi:10.1103/PhysRev.128.885

    Google Scholar 

  84. Ruck, H.M., Greiner, W.: A study of the electromagnetic interaction given by relativistic spin-1 wave equations in elastic scattering of polarized spin-1 nuclei or mesons. J. Phys. G 3(5), 657 (1977). doi:10.1088/0305-4616/3/5/013. URL http://iopscience.iop.org/0305-4616/3/5/013

    Google Scholar 

  85. Kaplan, D.B., Savage, M.J., Wise, M.B.: Perturbative calculation of the electromagnetic form factors of the deuteron. Phys. Rev. C 59(2), 617 (1999). doi:10.1103/PhysRevC.59.617

    Article  ADS  Google Scholar 

  86. Horwitz, L.P., Katz, N., Oron, O.: Could the classical relativistic electron be a strange attractor? Discret. Dyn. Nat. Soc. 2004(1), 179 (2004). doi:10.1155/S1026022604401034. URL http://www.hindawi.com/journals/ddns/2004/205916/abs/

  87. Roitgrund, A., Horwitz, L.: Simulation of the radiation reaction orbits of a classical relativistic charged particle with generalized off-shell Lorentz force. Discret. Dyn. Nat. Soc. 2010 1(2010). doi:10.1155/2010/602784. URL https://eudml.org/doc/230976

  88. Burakovsky, L., Horwitz, L.P., Schieve, W.C.: New relativistic high-temperature Bose-Einstein condensation. Phys. Rev. D 54(6), 4029 (1996). doi:10.1103/PhysRevD.54.4029

    Article  ADS  Google Scholar 

  89. Land, M.: Higher-Order Kinetic Term for Controlling Photon Mass in Off-Shell Electrodynamics (2006) 2003, doi:10.1023/A:1025670806787. URL http://arxiv.org/abs/hepth/0603074. Found. Phys. 33:1157-1175 arXiv:hepth/0603074

  90. Horwitz, L., Schieve, W., Piron, C.: Gibbs ensembles in relativistic classical and quantum mechanics. Ann. Phys. 137(2), 306 (1981). doi:10.1016/0003-4916(81)90199-8. URL http://www.sciencedirect.com/science/article/pii/0003491681901998

    Google Scholar 

  91. Berestetskii, V.B., Pitaevskii, L.P., Lifshitz, E.M.: Quantum Electrodynamics, Second Edition: Volume 4, 2nd edn. Butterworth-Heinemann (1982).

  92. Hagelstein, P.L., Chaudhary, I.U.: Electron mass shift in nonthermal systems. J. Phys. B 41(12), 125001 (2008). doi:10.1088/0953-4075/41/12/125001. URL http://iopscience.iop.org/0953-4075/41/12/125001

    Google Scholar 

  93. Huke, A., Czerski, K., Heide, P., Ruprecht, G., Targosz, N., Żebrowski, W.: Enhancement of deuteron-fusion reactions in metals and experimental implications. Phys. Rev. C 78(1), 015803 (2008). doi:10.1103/PhysRevC.78.015803

    Article  ADS  Google Scholar 

  94. Huke, A., Czerski, K., Heidea, P.: Experimental techniques for the investigation of the electron screening effect for d+d fusion reactions in metallic environments. Nucl. Phys. A 719(0), C279 (2003). doi:10.1016/S0375-9474(03)00932-1. URL http://www.sciencedirect.com/science/article/pii/S0375947403009321

  95. Huke, A., Czerski, K., Heide, P.: Measurement of the enhanced screening effect of the d + d reactions in metals. Nucl. Instrum. Methods Phys. Res. B 256(2), 599 (2007). doi:10.1016/j.nimb.2007.01.082. URL http://www.sciencedirect.com/science/article/pii/S0168583X07001784

    Google Scholar 

  96. Arensburg, A., Horwitz, L.P.: A first-order equation for spin in a manifestly relativistically covariant quantum theory. Found. Phys. 22(8), 1025 (1992). doi:10.1007/BF00733394

    ADS  MathSciNet  Google Scholar 

  97. Rolfs, C.: Enhanced electron screening in metals: a plasma of the poor man. Nucl. Phys. News 16(2), 9 (2006)

    Article  Google Scholar 

  98. Firestone, R.B., Baglin, C.M., Chu, S.Y.F.: Table of isotopes. Wiley (1999).

  99. Ziegler, J.F., Biersack, J.P., Ziegler, M.D.: SRIM–The Stopping and Range of Ions in Matter. SRIM Co. (2008).

  100. Kołos, W., Wolniewicz, L.: Accurate adiabatic treatment of the ground state of the hydrogen molecule. J. Chem. Phys. 41(12), 3663 (1964). doi:10.1063/1.1725796. URL http://jcp.aip.org/resource/1/jcpsa6/v41/i12/p3663_s1?isAuthorized=no

  101. Hagelstein, P.L., Senturia, S.D., Orlando, T.P.: Introductory Applied Quantum and Statistical Mechanics. Wiley (2004).

  102. Iwamura, Y., Itoh, T., Tsuruga, S.: Increase of reaction products in deuterium permeation induced transmutation. In: ICCF-17, p. 6. South Korea, Daejeon (2012).

  103. Nagel, D.: Characteristics and energetics of craters in LENR experimental materials. J Condens. Matter Nucl. Sci. 10, 1 (2013)

    Google Scholar 

  104. Szpak, S., Mosier-Boss, P.A., Young, C., Gordon, F.E.: Evidence of nuclear reactions in the Pd lattice. Naturwissenschaften 92(8), 394 (2005). doi:10.1007/s00114-005-0008-7

    Article  ADS  Google Scholar 

  105. Toriyabe, Y., Mizuno, T., Ohmori, T., Aoki, Y.: Elemental analysis of palladium electrodes after Pd/Pd light water critical analysis. In: Proceedings, ICCF-12. World Scientific Publishing Co., Pte. Ltd., Yokohama, Japan (2006), pp. 253–263. doi:10.1142/9789812772985_0025. URL http://adsabs.harvard.edu/abs/2006cmns12.253T

  106. Zhang, W.S., Dash, J.: Excess heat reproducibility and evidence of anomalous elements after electrolysis in Pd/D2 + H\(_{2}\)SO\(_{4}\) electrolytic cells. In: Proceedings, ICCF-13, p. 202. Russia, Sochi (2007).

  107. Iwamura, Y.: Detection of anomalous elements, X-Ray, and excess heat in D2-Pd system. Fusion Sci. Technol 33(4), 476 (1998)

    Google Scholar 

  108. Iwamura, Y., Itoh, T., Sakano, M., Yamazaki, N., Kuribayashi, S., Terada, Y., Ishikawa, T., Kasagi, J.: Observation of nuclear transmutation reactions induced by D2 gas permeation through pd complexes. In: ICCF-11, vol. 11, pp. 339–350. Marseilles, France (2006) doi:10.1142/9789812774354_0027. URL http://adsabs.harvard.edu/abs/2006cmns11.339I

Download references

Acknowledgments

The author acknowledges valuable correspondence with Lawrence Horwitz, and valuable discussions with Peter Hagelstein, Michael McKubre, David Nagel, and Paul Marto. He also acknowledges Vladimir Kresin for extensive critical but good-spirited and helpful discussions. Any errors are entirely the author’s, and he makes no claim of endorsement of this theory by anyone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Davidson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davidson, M. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena. Found Phys 44, 144–174 (2014). https://doi.org/10.1007/s10701-014-9774-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9774-4

Keywords

JEL Classification

Navigation