1 Introduction

In health economics, a large empirical literature looks at whether physicians induce patients to buy unnecessary treatments, specifically when physicians’ incomes are under pressure (the so-called supplier-induced demand hypothesis; for an overview, see Peacock and Richardson 2007). The underlying reasoning is that the physician can persuade the patient by changing his preferences and shifting his demand (Evans 1974), where this reasoning may extend to any expert–client relationship. Yet, a model in line with this reasoning is so far missing.

To construct such a model, we draw inspiration from the large empirical literature showing the existence of framing effects (see, e.g., the meta-analysis by Kühberger 1998),Footnote 1 and apply prospect theory (Kahneman and Tversky 1979; Tversky and Kahneman 1981). In prospect theory, decision-makers have a reference point with respect to which they perceive gains and losses. They are risk averse when considering gains, and risk loving considering losses; moreover, decision-makers are loss averse in caring more about losses than about equally sized gains. If a client has prospect-theoretic preferences, an expert who tries to persuade this client to buy services may frame the client’s decision problem by setting a reference point that maximizes the probability that the client buys the services. In particular, consider first the case where buying the services is risky, and not buying the services is safe. Such a scenario may arise if the services recommended by the expert consist of a risky cure, where the client who does not buy the services is not cured and obtains a low outcome with certainty, and the client who does buy the services is cured with probability less than one, and faces the possibility of undergoing an expensive cure that does not work. Given that clients are risk loving for losses, it now seems optimal for the expert to set a high reference point. Yet, the expert’s optimal reference point also depends on how risk lovingness changes along the client’s valuation function in the loss region, so that a detailed analysis is required.

Second, consider the case where buying the services is safe, and not buying the services is risky. This scenario may be relevant if the expert’s services take the form of a preventive treatment, where the client who buys the services avoids all future losses with certainty, but where it is possible that the client would not have incurred any loss without buying the preventive treatment. It is now ambiguous whether the expert should set a low, or an intermediate reference point. The fact that the client is risk averse for gains suggests setting a low reference point, so that all outcomes are seen as gains [this is reflected in the simple reasoning in both Rothman and Salovey (1997) and Rothman et al. (2006) that low reference points should be set to induce risk decisions, and high reference points to induce safe decisions]. Yet, at the same time, loss aversion creates a kink in the client’s valuation function around the reference point, which makes the client risk averse for mixed gains and losses. Indeed, as stressed by Wakker (2010, p. 292), “(…) more than half of the risk aversion empirically observed has nothing to do with utility curvature or with probability weighting, but is generated by loss aversion, the main empirical phenomenon regarding reference dependence”. Our analysis identifies circumstances in which experts should set an intermediate reference point, exploiting loss aversion; or should instead set a low reference point, exploiting risk aversion in the gains region (where the optimal reference point further depends on how risk aversion changes along the client’s valuation function).

Our behavioral model contrasts with theoretical literature that models the expert–client interaction as an asymmetric information game (see Dulleck and Kerschbamer 2006, for an overview; for similar theoretical models of the physician–patient relationship, see Dranove 1988; Calcott 1999; De Jaegher and Jegers 2001). In this literature, the client’s state is observed by the expert and not by the client himself, yet the client is an expected utility maximizer who is as strategically sophisticated as the expert. The expert may recommend a specific action, where the client may follow this advice or not (e.g., Pitchik and Schotter 1987; Pesendorfer and Wolinsky 2003); alternatively, the expert provides information, based on which the client himself decides what action to take (e.g., Kamenica and Gentzkow 2011). The client makes his decision taking into account that, given the expert’s preferences, her recommendation or information may be biased, and the client thereby constrains the expert’s ability to induce demand.Footnote 2

Yet, given the large behavioral economics literature that shows that decision-makers violate the premises of expected utility maximization, it is questionable whether clients always act as modeled in this theoretical literature on the expert–client relationship; moreover, the mentioned violations may be particularly relevant for clients, because they may only buy expert services infrequently. In line with this, a number of recent papers extend the literature on the expert–client relationship to behavioral and experimental economics. Spiegler (2006) studies a market for quacks with clients that follow non-Bayesian reasoning. Norton and Isaac (2012) show experimentally that clients who are aware of the expert’s conflict of interest may be subject to ambiguity aversion. Beck et al. (2013) experimentally study the effect of expert guilt aversion, and Kerschbamer et al. (2017) the effect of expert social preferences. The current paper fits into this behavioral literature, and specifically focuses on persuasion by experts of clients that have prospect-theoretic preferences and are subject to framing effects.

The paper is structured as follows. Section 1 contains the model. In Sect. 2, we derive the expert’s optimal reference point depending on the precise form of the client’s valuation function (Proposition 1), and provide comparative statics results (Proposition 2). This section includes a broad intuition for these results; detailed intuitions, and the proofs of the propositions, are found in Appendices 1 and 2. We end with a discussion in Sect. 3.

2 The model

All the symbols used in our model are listed in Appendix 3. At stage 1, the expert (she) observes the client’s (he) status, and tells the client all available information, meaning the available actions, and for each action the corresponding outcomes and their probabilities. Only a risky action and a safe action are available. The safe action always yields outcome \( M \). The risky action yields outcome \( H \) with probability \( p_{H} \), and outcome \( L \) with probability \( p_{L} \) (with \( p_{H} + p_{L} = 1 \)), where \( H > M > L \); \( o\left( {p_{L} ,p_{H} } \right) = p_{L} /p_{H} \) denotes the odds of failure. While the expert by assumption reveals all information (“you can either choose an action which always yields outcome \( M \), or a risky action which either yields a low outcome \( L \) or a high outcome \( H \), with odds of failure \( o\left( {p_{L} ,p_{H} } \right) \)”), she can still strategically set the client’s reference point \( R \), which is defined as a reference outcome level which the client uses to assess the outcomes as gains or losses. This \( R \) can be chosen from an interval \( [R_{\min} ,R_{\max} ] \) with \( R_{\min} < L \) and \( R_{\max} > H \). The client sees outcome \( X \) as a gain \( (X - R) \) if the outcome \( X \) exceeds the reference point \( R \), and as a loss \( (R - X) \) if the outcome \( X \) is exceeded by the reference point \( R \). At stage 2, after hearing the expert’s information, and given the reference point \( R \) set by the expert, the client calculates his expected psychic valuation (defined below, henceforth, in short: expected valuation) for each action, and picks the action with the highest expected valuation. Crucially, by assumption, the client does not consider expected valuations from the perspective of reference points other than \( R \). Our client is thus not aware that the expert strategically sets \( R \), and that if he would consider the decision problem from the perspective of another reference point, he could come to another decision. It follows that our model of expert–client interaction is not a standard game as considered in game theory, but could be termed a “behavioral game”. Such a behavioral game fits the category of extensive form games with possibly unaware players as treated by Halpern and Rêgo (2007), where our client is not aware of his own unawareness about the expert’s ability to set different reference points.

We now look at the payoffs. The expert always prefers the client to get services rather than not to get services. This translates into two scenarios for the model. In the preventive scenario, the safe action is interpreted as getting costly services (such as preventive healthcare, defense attorney services, or car maintenance) that prevent the client from incurring a future loss (such as getting ill, getting convicted, having one’s car breakdown), and the risky action is interpreted as not getting any services. Not getting services leads to the high outcome (\( H \)) when the client does not incur the future loss, as the cost of the services is avoided; when the client does incur the loss, it leads to the low outcome (\( L \)). When getting the services, the client never incurs the loss, but pays for the cost of the services, leading to the safe intermediate outcome (\( M \)). In the curative scenario, the risky action is interpreted as getting services (such as curative healthcare, litigation attorney services, car repair) and the safe action as not getting services. Not getting services means the client faces a certain loss (such as not being cured, not receiving damages, not having one’s car repaired), but avoids the cost of the services, leading to the safe intermediate outcome (\( M \)). The costly services either repair the loss of the client, leading to the high outcome (\( H \)), or do not repair the loss, leading to the low outcome (\( L \)), as the client then still incurs the cost of the services.

We now specify the client’s valuation function, in accordance with prospect theory. The client does not directly value the absolute outcomes \( L \), \( M \) and \( H \), but instead values these outcomes as gains or losses with respect to the reference point \( R \), where the client thinks differently about gains and losses. For given \( R \), the client’s valuation function \( f(X) \) of any outcome \( X \) takes the following form (Tversky and Kahneman 1992):

$$ \begin{aligned} X \ge R:f\left( X \right) = v(X - R) \hfill \\ X < R:f\left( X \right) = - \lambda v(R - X) \hfill \\ \end{aligned} $$
(1)

with \( v^{'} > 0 \), \( v^{''} < 0 \), \( v\left( 0 \right) = 0 \), and \( \lambda > 1 \).

The function \( v( \cdot ) \) is assumed to be increasing (\( v^{'} > 0 \)) and concave (\( v^{''} < 0 \)). Using function \( v( \cdot ) \) for the gains region and the negative of this function for the loss region, the client is modeled as risk averse for gains and risk loving for losses (the so-called reflection effect), in line with the well-known psychological principle (Weber–Fechner law, see Thaler 1999, p. 185) stating that, formulated in health terms, the difference between a gain (respectively, loss) of 1 year in life expectancy and a gain (loss) of 2 years in life expectancy appears larger than the difference between a gain (loss) of 10 years in life expectancy and a gain (loss) of 11 years in life expectancy. The client’s marginal valuation is, therefore, smaller the further away from the reference point (diminishing sensitivity). \( \lambda \) is the client’s degree of loss aversion; by including in the valuation function a coefficient \( \lambda > 1 \) for losses, one adapts the model to the general observation that decision-makers care more about losses (say, a loss of 1 year in life expectancy) than about equally sized gains (say, a gain of 1 year in life expectancy).

It follows now that the client prefers the risky action if

$$ \begin{aligned} & p_{L} f\left( L \right) + p_{H} f\left( H \right) \ge f(M) \\ & \Leftrightarrow \\ & \alpha = \frac{f\left( H \right) - f(M)}{f\left( M \right) - f(L)} \ge o(p_{L} ,p_{H} ) \\ \end{aligned} $$
(2)

and prefers the safe action when the inequality sign in (2) is reversed. \( \alpha \) denotes the benefit of getting the high outcome rather than the intermediate outcome, relative to the benefit of getting the intermediate outcome rather than the low outcome. Given the client’s valuation in (1), \( \alpha \) is a function of \( R \), denoted as \( \alpha (R) \). By (2), it follows that for a client with given \( o(p_{L} ,p_{H} ) \), if such \( R \) exist, in the curative (preventive) scenario the expert should choose any \( R \) such that \( \alpha \) exceeds (does not exceed) \( o(p_{L} ,p_{H} ) \), implying that for each scenario, a range of reference points is optimal.

To obtain more determinate results, we add to our model the realistic assumption that the expert faces heterogeneous clients, where the expert knows the probability of facing each individual type of client, but does not observe the type of the individual client she is currently facing. In particular, because of individual client characteristics that the client observes but the expert does not, clients may differ according to their odds of failure. For instance, a physician may be able to report how the probability of successful treatment depends on the patient’s lifestyle, where the patient can then use his private information on his own lifestyle to infer the odds of failure. Formally, we add a stage 0 to the model, where nature chooses the idiosyncratic part \( \varepsilon \) of the client’s odds of failure \( o(p_{L} ,p_{H} ) \), where \( o(p_{L} ,p_{H} ) = o(p_{L} ,p_{H} )^{*} + \varepsilon \), and where \( o(p_{L} ,p_{H} )^{*} \) is the generic part of the client’s odds of failure (which is identical for all clients). The expert observes \( o(p_{L} ,p_{H} )^{*} \), but the client does not. At the same time, the client observes \( \varepsilon \), but the expert does not, though the expert knows how \( \varepsilon \) is distributed; the expert can infer from this how \( o(p_{L} ,p_{H} ) \) is distributed, namely according to some density function \( g( \cdot ) \) over an interval \( [o_{ \min} , o_{ \max} ] \). At stage 1, the expert communicates to the client the available actions, and the generic odds of failure \( o(p_{L} ,p_{H} )^{*} \). Also, the expert sets the client’s reference point \( R \). At stage 2, the client uses (2) (with \( o(p_{L} ,p_{H} ) = o(p_{L} ,p_{H} )^{*} + \varepsilon \)) to determine whether or not to buy services.Footnote 3

3 Results

In the curative scenario, by (2) any client with odds of failure \( o \) such that \( o \le \alpha \) chooses the curative services, whereas any client with an o such that \( o > \alpha \) does not choose the services. It follows that, to maximize the probability that the client buys the curative services, the expert should set a reference point such that \( \alpha \) is maximized, where we denote such a reference point as \( R^{C} \). As \( \alpha = \frac{f\left( H \right) - f(M)}{f\left( M \right) - f(L)} \), it is an inverse measure of the extent to which the client’s valuation function is concave, and thus is at the same time a measure of risk tolerance. The expert who wants to induce the client to buy risky curative services can thus be seen as maximizing the client’s risk tolerance.

In the preventive scenario, by (2) it is instead the case that any client with odds of failure \( o \) such that \( o \ge \alpha \) chooses the preventive services, whereas any client with an o such \( o < \alpha \) does not choose the services. Therefore, to maximize the probability that the client buys the preventive services, the expert should set a reference point such that \( \alpha \) is minimized, where we denote this reference point as \( R^{P} \). The expert who wants to induce the client to buy the safe preventive services can thus be seen as minimizing the client’s risk tolerance.

Proposition 1 (which is verbally stated in the body of the paper, and formally in Appendix 1) focuses on the cases where there is a unique optimal reference point, and derives this reference point for the preventive scenario (part I) and the curative scenario (part II), for valuation functions \( v( \cdot ) \) with an absolute rate of risk aversion (ARA) that is constant in wealth (CARA) or decreasing in wealth (DARA), and for generic levels of loss aversion. The less plausible case where the absolute rate of risk aversion increases in wealth (IARA) is not considered. Next to points I and II, the proposition first broadly states that the optimal reference point does not exceed the intermediate outcome \( M \) in the preventive scenario, and is at least \( M \) in the curative scenario. Furthermore, for both scenarios, under points (a), (b), etc., candidate optimal reference points are listed in detail; for each such candidate optimal reference point the conditions are listed under which the optimal reference point is indeed optimal.

We here provide a broad intuition for the results in Proposition 1, with a detailed intuition stated in Appendix 1. As already pointed out, to induce the risky curative (safe preventive) services, the expert should maximize (minimize) the client’s risk tolerance. Risk tolerance \( \alpha \) as a function of the reference point \( R \) is represented in Figs. 1 (CARA) and 2 (DARA), where the solid curve represents the case without loss aversion (\( \lambda = 1 \)), whereas the dashed curve and dash-dotted curves represent low (\( \lambda_{L} \)) and high (\( \lambda_{H} \)) loss aversion. As the client is risk averse (risk loving) for pure gains (pure losses), risk tolerance is low (high) for low (high) reference points. For intermediate reference points, where the client perceives mixed gains and losses, he is more risk averse the more loss averse he is, as loss aversion creates a kink in the valuation around the reference point. It follows that, roughly, when inducing the risky curative services the expert should set a high reference point (part II of Proposition 1, where \( R^{C} > M \)), and when inducing the safe preventive services, the expert should set a low (intermediate) reference point for low (high) loss aversion (part I of Proposition 1, where \( R^{P} \le M \)). The results in Proposition 1 on the optimal reference points are more specific due to the shape of the valuation function. In the preventive scenario, when loss aversion is low, in spite of the fact that the reference point should be low, it is worthwhile to move slightly into the loss region because, first, with CARA and DARA risk aversion is weakly larger close to the reference point, and second, because the client becomes even more risk averse for mixed gains and losses, due to loss aversion. In the curative scenario, the reference point need not be set higher than \( H \), because with CARA and DARA risk tolerance is weakly larger close to the reference point. As long as loss aversion is not too large, it is worthwhile to slightly move into the gains region by setting the reference point slightly lower than \( H \), to exploit the fact that risk tolerance as at its highest around the reference point. However, if loss aversion is high, the risk aversion that arises for mixed gains and losses means that one should not lower the reference point below \( H \).

Fig. 1
figure 1

Risk tolerance (α) as function of client’s reference point (\( R \)) for CARA valuation function. Solid curve: no loss aversion (\( \lambda = 1 \)); dashed curve: low loss aversion (\( \lambda_{L} \)); dash-dotted curve: high loss aversion (\( \lambda_{H} \)). \( R^{C} \) (\( R^{P} \)) indicates optimal reference point in curative (preventive) scenario

Fig. 2
figure 2

Idem as Fig. 1, but for DARA valuation function

Proposition 1

Consider a client who takes either a safe action (always yielding an intermediate outcome) or a risky action (yielding either a low or a high outcome). Let the client have prospect-theoretic preferences with an absolute rate of risk aversion that is either constant (CARA) or decreasing in wealth (DARA). Then:

  1. I

    in the preventive scenario, the safe action means buying preventive services and the risky action means not buying them. The expert sets the reference point (\( R^{P} ) \):

    1. (a)

      in between the low and intermediate outcome for low loss aversion;

    2. (b)

      equal to the intermediate outcome for high loss aversion.

  2. II

    in the curative scenario, the risky action means buying curative services and the safe action means not buying them. The expert sets a reference point (\( R^{C} ) \):

    1. (a)

      in between the intermediate and high outcome for DARA and low loss aversion;

    2. (b)

      equal to the high outcome for DARA and high loss aversion;

    3. (c)

      equal to the high outcome or higher for CARA.

Proof

See Appendix 1.□

It is worth to compare the results in Proposition 1 to those of Schwartz et al. (2008) on framing of healthcare decisions without risk. In terms of our model, these authors consider the degenerate case where the “risky” action yields one of the two outcomes, say outcome H, with probability 1. As \( H > M \), this means that the client always chooses the “risky” action, whatever \( R \). Yet, it still makes sense to see the expert as setting \( R \) to either minimize or maximize \( f\left( H \right) - f(M) \): when the expert prefers the “risky” (safe) action, she may aim at making its advantage (disadvantage) seem as large (small) as possible. Technically, rather than to maximize or minimize curvature as a function of \( R \), Schwartz et al. maximize or minimize the marginal valuation. It is easy to see that the “risky” action feels as advantageous as possible in comparison to the safe action for \( R^{C} = H \) in case of high loss aversion, and for a unique \( R^{C} \) with \( M < R^{C} < H \) in case of low loss aversion (this goes beyond the results of Schwartz et al., who only consider pure gains and pure losses.). This result is in line with Proposition 1 II(a) and II(b) because with DARA, on top of the marginal valuation, also curvature is larger closer to the reference point. Furthermore, the safe action feels the least disadvantageous with respect to the “risky” action when \( R^{P} = R_{\min} \), by diminishing sensitivity and by the absence of loss aversion in the gains region. The fact that this result differs from our own results in Proposition 1 I(a) and I(b), shows that having a non-degenerate lottery for the risky action rather than a degenerate lottery, has a clear effect; an intermediate reference point should be chosen to take advantage of the diminishing ARA and/or the fact that there is loss aversion.

We further explore what the results in Proposition 1 imply for the client’s welfare.Footnote 4 Here, we immediately note that, as stressed by Kahneman (1999, pp. 14–15), the valuation function in prospect theory refers to the decision-maker’s decision utility, which need not coincide with the decision-maker’s experienced utility (see Kahneman et al. 1997). If the expected value of the risky action is lower than or equal to the value of the safe action (\( p_{L} L + p_{H} H \le M \)), and if we accept that from the perspective of experienced utility, the client is a standard risk-averse expected utility maximizer, then the client’s experienced utility is negatively affected by the expert’s ability to frame in the curative scenario, but experienced utility is not affected in the preventive scenario. If instead \( p_{L} L + p_{H} H > M \), for sufficiently large \( p_{H} \), even from the perspective of experienced risk-averse expected utility, the client is still better off with the risky than with the safe action; in this case, the client’s experienced utility is not affected by the expert’s ability to frame in the curative scenario, but experienced utility is negatively affected in the preventive scenario.

Having derived the optimal reference point in Proposition 1, the logical next step in Proposition 2 is a comparative statics exercise, investigating how the optimal reference point is affected by changes in the parameters, namely by the level of risk aversion, and by the level of loss aversion. Proposition 2 (verbal statement in the body of the paper, precise statement in Appendix 2) separately looks at (I) the preventive scenario and (II) the curative scenario, and for each of these two scenarios in turn separately looks at the comparative statics for (a) the CARA valuation function, and (b) the CRRA valuation function; the focus is on these valuation functions as they have a single parameter for the level of risk aversion, which we can vary.

We again provide a broad intuition for the results in Proposition 2, with a detailed intuition provided in Appendix 2. In the preventive scenario, the expert wants to make the client as risk averse as possible. All else equal a higher level of loss aversion means a higher level of risk aversion around the reference point, giving the expert more incentives to put \( R^{P} \) at an intermediate level. At the same time, all else equal, a higher level of risk aversion means that the expert can induce high levels of risk aversion by putting \( R^{P} \) low and letting the client perceive gains. In the curative scenario, the expert wants to make the client as risk tolerant as possible. With a CARA valuation function, the client’s risk lovingness is constant for any \( R \) higher than or equal to the largest outcome, and entering the gains region only decreases risk lovingness. \( R^{C} \) is, therefore, unaffected by the parameters. With a CRRA valuation function, the optimal \( R^{C} \) is additionally affected by the fact that the level of risk lovingness changes as \( R \) is changed, leading to more subtle results, and requiring detailed intuitions (see Appendix 2).

Proposition 2

Let a client have prospect-theoretic preferences with either an absolute rate of risk aversion (ARA) that is constant in wealth (CARA) or a relative rate of risk aversion (RRA) that is constant in wealth (CRRA).

  1. I

    If the expert induces preventive services and sets a reference point\( R^{P} \)in between the low and intermediate outcome, then:

    1. (a)

      with CARA, \( R^{P} \) increases in loss aversion and decreases in the ARA;

    2. (b)

      with CRRA, \( R^{P} \) increases in loss aversion and decreases in the RRA.

  2. II

    If the expert induces curative services (reference point \( R^{C} \)), then:

    1. (a)

      with CARA, \( R^{C} \) is constant in loss aversion and in the ARA;

    2. (b)

      with CRRA, in case \( R^{C} \) lies between the intermediate and the high outcome, \( R^{C} \) increases in loss aversion, and \( R^{C} \) decreases in the RRA for low RRA and increases in the RRA for high RRA.

Proof

See Appendix2.□

4 Discussion

As the setting of the model is extremely simple, it is important to check to what extent our simplifying assumptions affect the results. First, in the model the client chooses only between two actions, namely a risky and a safe action, where the risky action has only two possible outcomes. The results are not changed when the client instead decides between a risky and a less risky action, as the same measure of curvature and risk tolerance as in Figs. 1 and 2 can still be employed. When the risky action has more than two outcomes, the qualitative results that the safe action is best induced by framing a low reference point, and that a risky action is best induced by framing a high reference point when loss aversion is low but by framing an intermediate reference point when loss aversion is high, are not changed. Still, in this case the exact level of the optimal reference point is also affected by the probability distribution of the outcomes for the risky action. When the client faces the decision to choose between several treatments and no treatment, where these actions can be ordered according to their riskiness, it may be that the expert can only induce either the safest action, or the riskiest action, but not some action with intermediate riskiness. For instance, if the expert is able to set the reference point such that the client is risk neutral, and if risk neutrality leads the client to be indifferent between all actions, then the expert cannot productively induce treatments with an intermediate level of risk should she prefer to do this, as a client who is induced to be risk averse will choose the safest action, and a client who is induced to be risk loving will choose the riskiest action. This shows that the expert’s power to induce specific actions is not unlimited.

Second, we have considered the same valuation function for gains and for losses, with only loss aversion explaining the different assessment of gains and losses. However, literature which estimates the valuation function using the power function (CRRA) often finds the valuation function to be closer to linearity in the loss part than in the gains part (for an overview see Booij et al. 2010). Still, the differences in the estimated powers are small, so that the effect on our results is limited. Third, we have assumed that clients value decisions along a single dimension. Yet, clients may consider several dimensions, such as outcome, monetary cost, or unpleasantness of the receiving the services. Separate framing may then take place for each dimension, where framing may be easier for dimensions that are more salient (Rothman et al. 2006). Using the techniques of our analysis, it is possible to extend the model along these lines. Fourth, prospect theory is based on observed decisions over lotteries with monetary outcomes. Yet, prospect-theoretic preferences may have a specific form in specific settings, e.g., for healthcare decisions, preferences may be specific because of the large stakes involved (Attema et al. 2012), and because outcomes are obtained in the distant future (Van der Pol and Ruggeri 2008). Further empirical research is needed here to guide plausible estimates of prospect-theoretic preferences in specific contexts.

Crucial for our results is the assumption that the expert can freely choose any reference point for the client. Yet, the expert could be constrained in what reference point can be suggested in the following ways. First, following Kőszegi and Rabin’s (2006), while clients may have prospect-theoretic preferences with respect to a reference point, they may only be willing to consider a reference point that is in line with their expectations, constraining the reference points from which the expert can choose. Thus, a client who expects to buy safe preventive services could then only consider the outcome of buying these services as the reference point. As long as the client is to a sufficient extent loss averse, this happens to also be the optimal reference point for the expert. Yet, a client who expects to buy risky curative services would then in line with Kőszegi and Rabin form a stochastic reference point determined by the expected outcomes of buying the risk curative services.

Second, even if contrary to Kőszegi and Rabin clients would be willing to consider reference points that are not in line with their expectations, following Salant and Siegel (2018), the framing effect of the expert’s suggested reference point may wear off if the client gets more time to make his decision, and by talking to family or friends realizes that the decision can also be considered from the perspective of other reference points. In this case, standard models of the expert–client relationship where the client is uninformed but still strategically interacts with experts may be more relevant. Such concerns may explain why the literature on strategic framing is scarce [exceptions are Puppe and Rosenkranz (2011), where manufacturers suggest a retail price, so that buyers’ prospect-theoretic preference force retailers to follow this price, and Rosenkranz and Schmitz (2007), where auctioneers may strategically set reserve prices because bidders consider them as reference points].

At the same time, a large empirical literature shows the existence of framing effects (see, e.g., the meta-analysis by Kühberger 1998; for recent framing experiments, see Hossain and List 2012; Goerg and Kube 2012; Hong et al. 2015; Armantier and Boly 2015; for framing effects outside of the laboratory, see, e.g., Pope and Schweitzer (2011), who show that professional golf players are affected by exogenously given reference points). We argue that framing effects may be plausible in the expert–client relationship, because the client may face the modeled decisions infrequently, and may not be able to consult other experts or to talk to other clients who have faced similar decisions. For this reason, even if reference points may in general be determined by expectations, the client may find it difficult to form any expectations in this context. Moreover, even if the reference points suggested by experts wear off in the long term, clients may have to make short-term decisions (e.g., a patient needs to decide on the spot whether or not a dentist performs a root-canal treatment), and because of the hot–cold empathy gap (Loewenstein 2005) may not realize that if they had more time to make the decision, they could see the decision problem from the perspective of other reference points than the one suggested by the expert.

We end by noting that standard models of the expert–client relationship where clients are fully rational on the one hand, and our model where experts face no constraints in the extent to which they can frame the clients’ decisions on the other hand, may be seen as opposed benchmarks, to which real-world expert–client encounters should be compared. Our theoretical analysis cannot determine how close the real-world expert–client relationship lies to our strategic-framing benchmark, and this question can only be answered by means of empirical analysis. While it seems difficult to catch the expert in the act of inducing demand by means of framing, two types of empirical analyses could still test the predictions of our model. First, our model provides predictions on which types of clients should be more susceptible to framing of particular types of services (curative, or preventive services). While one may not directly be able to observe how risk averse or loss averse clients are, one could fall back on studies that relate risk aversion or loss aversion to more easily observed characteristics such as sex or age, to come to hypotheses on how such personal characteristics make one susceptible to demand inducement in particular contexts, and lead one to consume more services. Second, our predictions could be tested in a well-designed laboratory experiment, involving both participants taking on the role of clients, and the role of experts. We hope that such an experiment is then able to answer the question whether the expert–client relationship is purely a game of strategic information transmission, or whether strategic framing (also) plays a role.