Skip to main content
Log in

Attractors and Pathological Aspects in Excitable Cells

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

In this article, physiological and pathological forms of excitability are studied in a two-dimensional electrical model of excitable cell endowed with a generic inward persistent conductance. Bifurcation analysis of the model is performed as a function of the maximal inward persistent conductance, the input current, or the voltage dependency of the activation function. Several discharge modes are exhibited, including: (1) a basic mode that corresponds to a resting potential and production of action potential; (2) bistability between resting potential and self-sustained spiking; (3) a pacemaker mode of discharge; and (4) bistability between resting potential and plateau potential. These behaviours can be compared to experimentally described physiological and pathological forms of excitability that depend upon inward persistent conductances. In the results obtained, attractors allow for a qualitative description of physiological and pathological states. However, it is not possible to obtain an unambiguous identification of particular 'physiological attractors' or 'pathological attractors'. In the perspective of the theory of dynamical systems, we suggest that pathological states can be modelled in two different ways, i.e. by bifurcation (as in the present model) or by perturbation. We also highlight some other theoretical concepts that may be relevant to a theoretical description of pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Arvanitaki, A. (1939). Les variations graduées de la polarisation des systèmes excitables, Paris: Hermann.

    Google Scholar 

  • Av-Ron E., H. Parnas and L.A. Segel (1991). A minimal biophysical model for an excitable and oscillatory neuron. Biological Cybernetics 65: 487-500.

    Google Scholar 

  • Bargas, J. and E. Galarraga (1995). Ion channels: keys to neuronal specialization. In Arbib A. M. The handbook of brain theory and neural networks. The MIT Press, Cambridge, Mass.

    Google Scholar 

  • Bennet, P.B., K. Yazawa, N. Makita, A.L. George Jr (1995). Molecular mechanism for an inherited cardiac arrhythmia. Nature 376: 683-685.

    Google Scholar 

  • Camperi, M. and X.J. Wang (1998). A model of visuospatial working memory in prefrontal cortex: recurrent network and cellular bistability. The Journal of Computational Neurosciences, in press.

  • Cannon, S.C. (1996). Sodium channel defects in myotonia and periodic paralysis. Annual Review of Neuroscience 19: 141-164.

    Google Scholar 

  • Cannon, S.C. and D.P. Corey (1993). Loss of sodium channel inactivation by Anemone toxin (ATX II) mimics the myotonic state in hyperkalemic periodic paralysis. The Journal of Physiology 466: 501-520.

    Google Scholar 

  • Cannon, S.C., R.H. Brown and D.P. Corey (1993). Theoretical reconstruction of myotonia and paralysis caused by incomplete inactivation of sodium channels. Biophysical Journal 65: 270-288.

    Google Scholar 

  • Connors, B.W., M.J. Gutnick and D.A. Prince (1982). Electrophysiological properties of neocortical neurones in vitro. The Journal of Neurophysiology 48(6): 1302-1320.

    Google Scholar 

  • Conway, B.A., H. Hultborn, O. Kiehn and I. Mintz (1988). Plateau potentials in-motoneurones induced by intravenous injection of L-DOPA and clonidine in the spinal cat. The Journal of Physiology 405: 369-384.

    Google Scholar 

  • Cowan, R.L. and C.J. Wilson (1994). Spontaneous firing patterns and axonal projections of single corticostriatal neurones in the rat medial agranular cortex. The Journal of Neurophysiology 71(1): 17-32.

    Google Scholar 

  • Delord, B., A. Klaassen, Y. Burnod, R. Costalat and E. Guigon (1997). Bistable behaviour in a neocortical neuron model. Neuroreport 8: 1019-1023.

    Google Scholar 

  • Dickson, C.T., A.R. Mena and A. Alonsa (1997). Electroresponsiveness of medial enthorinal cortex layer III neurones in vitro. Neuroscience 81(4): 937-950.

    Google Scholar 

  • FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. The Biophysical Journal 1: 455-466.

    Google Scholar 

  • French, C.R., P. Sah, K.J. Buckett and P.W. Gage (1990). A voltage-dependent persistent sodium current in mammalian hippocampal neurones. The Journal of General Physiology 95: 1139-1157.

    Google Scholar 

  • Goldman-Rakic, P.S. and L.D. Selemon (1997). Functional and anatomical aspects of prefrontal cortex pathology in schizophrenia. Schizophrenia Bulletin 23(3): 437-458.

    Google Scholar 

  • Guigon, E., B. Dorizzi, Y. Burnod and W. Schultz. (1995). Neural correlates of learning in the prefrontal cortex of the monkey: a predictive model. Cerebra Cortex 5: 135-147.

    Google Scholar 

  • Hodgkin, A.L. (1948). The local electric changes associated with repetitive action in a non-medulated axon. The Journal of Physiology 107: 165-181.

    Google Scholar 

  • Hounsgaard, J., H. Hultborn, B. Jespersen and O. Kiehn (1984). Intrinsic membrane properties causing a bistable behaviour of a-motoneurons. Experimental Brain Research 55: 391-394.

    Google Scholar 

  • Joos, G. and D.D. Joseph (1990). Elementary Stability and Bifurcation Theory. 2nd edition. Springer-Verlag, New-York, Berlin, Heidelberg.

    Google Scholar 

  • Klink, R.M. and A. Alonso (1993). Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurones. The Journal of Neurophysiology 70: 144-157.

    Google Scholar 

  • Kuznetsov, Y.A. (1995). Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, 112. Springer-Verlag. New York, Berlin, Heidelberg.

    Google Scholar 

  • Lampl, I., P. Schwindt and W. Crill (1998). Reduction of cortical pyramidal neuron excitability by the action of phsnytoin on persistent Na+ current. The Journal of Pharmacology and Experimental Therapeutics 284(1): 228-237

    Google Scholar 

  • Lavin, A. and A.A. Grace (1998). Dopamine modulates the hyperpolarized state of prefrontal cortical neurones. Society of Neurosciences Abstracts 139.12: 351.

    Google Scholar 

  • Lipowsky, R., T. Gillessen and C. Alzheimer (1996). Dendritic Na+ channels amplify EPSPs in hippocampal CA1 pyramidal cells. The Journal of Neurophysiology 76(4): 2181-2191

    Google Scholar 

  • Llinàs, R.R. (1988). The intrinsic electrophysiological properties of mammalian neurones: insights into central nervous function. Science 242: 1654-1664.

    Google Scholar 

  • Nagumo, J.S., S. Arimoto and S. Yoshizawa (1962). An active pulse transmission line simulating nerve axon. Proceedings of the Institute of Radio Engineers 50: 2061-2070.

    Google Scholar 

  • Nielsen, J. and H. Hultborn (1993). Regulated properties of motoneurons and primary afferents: new possible spinal mechanisms underlying spasticity. In: Spasticity: mechanisms and management (Eds eiThilmann A.F., Burke D.J., Rymer W.Z.) Springer-Verlag.

  • Okubo, Y., T. Suhara, K. Suzuki, K. Kobayashi, O. Inoue, O. Terasaki, Y. Someya, T. Sassa, Y. Sudo, E. Matsushima, M. Iyo, Y. Tateno and M. Toru (1997). Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385: 634-636.

    Google Scholar 

  • Rinzel, J. (1985). Excitation dynamics: insights from simplified membrane models. Federation proceedings 44(15): 2944-2946.

    Google Scholar 

  • Rinzel, J. (1990). Electrical excitability of cells, theory and experiment: review of the Hodgkin-Huxley foundation and an update. The Bulletin of Mathematical Biology 52(1): 5-23.

    Google Scholar 

  • Rinzel, J. and G.B. Ermentrout (1989). Analysis of excitability and oscillations. In Koch C., Segev I. (eds). Methods in neuronal modeling, The MIT Press, Cambridge, Mass.

    Google Scholar 

  • Tunnicliff, G. (1996). Basis of antiseizure action of phenytoin. General Pharmacology 27(7): 1091-1097.

    Google Scholar 

  • Turrigiano, G., L.F. Abbot and E. Marder (1994). Activity-dependent changes in the intrinsic properties of cultured neurones. Science 264: 974-977.

    Google Scholar 

  • Wang, X.J. and J. Rinzel (1995). Oscillatory and bursting properties of neurones. In Arbib A. M. The handbook of brain theory and neural networks. The MIT Press, Cambridge, Mass.

    Google Scholar 

  • Wang, L. and I. Ross (1990). Synchronous neural networks of nonlinear threshold elements with hysteresis. Proceedings of the National Academy of Sciences 87: 988-992.

    Google Scholar 

  • Yang, C.R. and K.J. Seamans (1996). Dopamine D1 receptors actions in layers V-VI rat prefrontal cortex neurones in vitro: modulation of dendritic-somatic signal integration. The Journal of Neuroscience 16(5): 1922-1935.

    Google Scholar 

  • Yang, C.R., J.K. Seamans and N. Gorelova (1996). Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro. The Journal of Neuroscience 16(5): 1904-1921.

    Google Scholar 

  • Yuen, G.L., P.E. Hockherger and J.C. Houk (1995). Bistability in cerebellar purkinje cell dendrites modelled with high-threhold calcium and delayed-rectifier potassium channels. Biological Cybernetics 73(4): 375-388.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delord, B. Attractors and Pathological Aspects in Excitable Cells. Acta Biotheor 47, 239–252 (1999). https://doi.org/10.1023/A:1002694822715

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002694822715

Keywords

Navigation