Skip to main content

The Cube Generalizing Aristotle’s Square in Logic of Determination of Objects (LDO)

  • Chapter
Around and Beyond the Square of Opposition

Part of the book series: Studies in Universal Logic ((SUL))

Abstract

In this paper we present a generalization of Aristotle’s square to a cube, in the framework of an extended quantification theory defined within the Logic of Determination of Objects (LDO). The Aristotle’s square is an image which makes the link between quantifier operators and negation in the First Order Predicate Language (FOPL). However, the FOPL quantification is not sufficient to capture the “meaning” of all quantified expressions in natural languages. There are some expressions in natural languages which encode a quantification on typical objects. This is the reason why we want to construct a logic of objects with typical and atypical objects. The Logic of Determination of Objects (LDO) (Desclés and Pascu, Logica Univers. 5(1):75–89, 2011) is a new logic defined within the framework of Combinatory Logic (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958) with functional types. LDO basically deals with two fundamental classes: a class of concepts (\(\mathcal{F}\)) and a class of objects (\(\mathcal{O}\)). LDO captures two kinds of objects: typical objects and atypical objects. They are defined by the means of other primitive notions: the intension of the concept f (\(\operatorname{Int}f\)), the essence of a concept f (\(\operatorname{Ess}f\)), the expanse of the concept f (\(\operatorname{Exp}f\)), the extension of the concept f (\(\operatorname{Ext}f\)). Typical objects in \(\operatorname{Exp}f\) inherit all concepts of \(\operatorname{Int}f\); atypical objects in \(\operatorname{Exp}f\) inherit only some concepts of Intf. LDO makes use of all the above notions and organizes them into a system which is a logic of objects (applicative typed system in Curry’s sense—Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958—with some specific operators). In LDO new quantifiers are introduced and studied. They are called star quantifiers: Π and Σ (Desclés and Guentcheva, in: M. Bőttner, W. Thűmmel (eds.), Variable-Free Semantics, pp. 210–233, Secolo, Osnabrűck, 2000). They have a connection with classical quantifiers. They are considered as the determiners of objects of \(\operatorname{Exp}f\). They are different from the usual quantifiers Π and Σ expressed in the illative Curry version (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958) of Frege’s quantifiers. They are defined inside the Combinatory Logical formalism (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958) starting from Π and Σ, by means of abstract operators of composition called combinators (Curry and Feys, Combinatory Logic I, North-Holland, Amsterdam, 1958). The system of four quantifiers Π, Σ, Π and Σ captures the extended quantification that means quantification on typical/atypical objects. The cube generalizing the Aristotle’s square visualizes the relations between quantifiers Π, Σ, Π and Σ and the negation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    N 1 is the functional negation, the negation of a concept [10].

  2. 2.

    \(\operatorname{Exp}_{\tau }(\tau f)\) is the extension containing all typical objects generated from τf.

  3. 3.

    Aτδ6, that is: \(((\forall f), f \in{\mathcal{F}})\lbrack(f (\tau f)) = \top \) iff \(\operatorname{Ext}_{\tau} (\tau f) \neq \emptyset\rbrack\).

References

  1. Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Princeton (1941)

    Google Scholar 

  2. Curry, H.B., Feys, R.: Combinatory Logic I. North-Holland, Amsterdam (1958)

    Google Scholar 

  3. Desclés, J.-P.: Implication entre concepts, la notion de typicalité. In: Travaux de linguistique et de littérature, XXIV, 1, pp. 79–102 (1986)

    Google Scholar 

  4. Desclés, J.-P.: Langages applicatifs, langues naturelles et cognition. Hermès, Paris (1990)

    Google Scholar 

  5. Desclés, J.-P.: Dialogue sur les prototypes et la typicalité. In: Denis, M., Sabah, G. (eds.) Modèles et concepts pour la science cognitive, hommage J.-F. Le Ny, pp. 139–163. Presses de l’Université de Grenoble, Grenoble (1993)

    Google Scholar 

  6. Desclés, J.-P., Cheong, K.-S.: Analyse critique de la notion de variable. Math. Sci. Hum. 173, 43–102 (2006)

    MATH  Google Scholar 

  7. Desclés, J.-P., Guentcheva, Z.: Quantification without bound variables. In: Bőttner, M., Thűmmel, W. (eds.) Variable-Free Semantics, pp. 210–233. Secolo, Osnabrűck (2000)

    Google Scholar 

  8. Desclés, J.-P., Pascu, A.: Logic of determination of objects—the meaning of variable in quantification. Int. J. Artif. Intell. Tools 15(6), 1041–1052 (2006)

    Article  Google Scholar 

  9. Desclés, J.-P., Pascu, A.: Logique de la détermination des objets (LDO): une logique pour l’analyse des langues naturelles. Rev. Roum. Linguist./Rom. Rev. Linguist. LII(1–2), 55–96 (2007)

    Google Scholar 

  10. Desclés, J.-P., Pascu, A.: Logic of determination of objects (LDO): how to articulate “extension” with “intension” and “objects with concepts. Logica Univers. 5(1), 75–89 (2011)

    Article  Google Scholar 

  11. Geach, P., Black, M.: Translation from the Philosophical Writings of Gottlob Frege (1891), 2nd edn. (with corrections). Oxford Basil Blackwell, Oxford (1960)

    Google Scholar 

  12. Gentzen, G.: Recherches sur la déduction logique. Traduit de l’allemand par Feys, R., Ladrière, J. Presses Universitaires de France, Paris (1955)

    Google Scholar 

  13. Hilbert, D., Bernays, P.: Grundlagen der Mathematik II. Springer, Berlin (1939)

    MATH  Google Scholar 

  14. Frege, G.: Grundgesetze der Arithmetik, begriffsschriftlich abgeleitet (1893). Translated and edited with an introduction by Furth, M.: Basic Laws of Arithmetic (Exposition of the System). University of California Press, Los Angeles (1967)

    Google Scholar 

  15. Frege, G.: Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Halle (1879). Version francaise par Besson, C.: l’Idéographie. Vrin, Paris (1999)

    Google Scholar 

  16. Montague, R.: The proper treatment of quantification in ordinary English. In: Thomason, R.H. (ed.) Formal Philosophy: Selected Papers of Richard Montague. Yale University Press, New Haven (1974)

    Google Scholar 

  17. Rosch, E.: Principles of categorization. In: Cognition and Categorization. Lawrence Erlbaum, Hillsdale (1978)

    Google Scholar 

  18. Pascu, A.: Logique de Détermination d’Objets: concepts de base et mathématisation en vue d’une modélisation objet. Thèse de doctorat, Université de Paris-Sorbonne, Paris (2001)

    Google Scholar 

  19. Pascu, A.: Les objets dans la représentation des connaissances. Application aux processus de catégorisation en informatique et sciences humaines. Habilitation à diriger des recherches, Université de Paris-Sorbonne, Paris (2006)

    Google Scholar 

Download references

Acknowledgements

Many thanks to our reviewers for their interesting remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Desclés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel

About this chapter

Cite this chapter

Desclés, JP., Pascu, A. (2012). The Cube Generalizing Aristotle’s Square in Logic of Determination of Objects (LDO). In: Béziau, JY., Jacquette, D. (eds) Around and Beyond the Square of Opposition. Studies in Universal Logic. Springer, Basel. https://doi.org/10.1007/978-3-0348-0379-3_19

Download citation

Publish with us

Policies and ethics