Skip to main content

Application of Urquhart’s Representation of Lattices to Some Non–classical Logics

  • Chapter
  • First Online:
Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 22))

Abstract

Based on Alasdair Urquhart’s representation of not necessarily distributive bounded lattices we exhibit several discrete dualities in the spirit of the “duality via truth” concept by Orłowska and Rewitzky. We also exhibit a discrete duality for Urquhart’s relevant algebras and their frames.

Second Reader

I. Rewitzky

University of Stellenbosch

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Not to be confused with the concept of the same name used in Physics.

  2. 2.

    The example was found by Mace4 (McCune 2010).

References

  • Allwein, G., & Dunn, J. M. (1993). Kripke models for linear logic. Journal of Symbolic Logic, 58, 514–545.

    Article  Google Scholar 

  • Birkhoff, G. (1967). Lattice theory (Vol. 25, 3rd Ed.). Providence: American Mathematical Society, Colloquium Publications.

    Google Scholar 

  • Craig, A., & Haviar, M. (2014). Reconciliation of approaches to the construction of canonical extensions of bounded lattices. Mathematica Slovaka, 6, 1335–1356.

    Google Scholar 

  • Czelakowski, J. (2015). The equationally-defined commutator, a study in equational logic and algebra. Birkhäuser.

    Google Scholar 

  • Dalla Chiara, M. L., & Giuntini, R. (2002). Quantum logics. In Gabbay, D., & Guenthner, F., (Eds.), Handbook of philosophical logic (Vol. 6, pp. 129–228). Kluwer.

    Google Scholar 

  • Düntsch, I., & Gediga, G. (2018). Guttman algebras and a model checking procedure for Guttman scales. In Golińska-Pilarek, J., & Zawidzki, M., (Eds.), Ewa Orłowska on relational methods in logic and computer science. Outstanding contributions to logic (pp. 355–370). Berlin: Springer. MR3929609.

    Google Scholar 

  • Düntsch, I., & Orłowska, E. (2001). Beyond modalities: Sufficiency and mixed algebras. In Orłowska, E., & Szałas, A., (Eds.), Relational methods for computer science applications (pp. 263–283). Heidelberg: Physica-Verlag. MR1858531.

    Google Scholar 

  • Düntsch, I., & Orłowska, E. (2008). A discrete duality between apartness algebras and apartness frames. Journal of Applied Non-Classical Logics, 18, 213–227. MR2462235.

    Google Scholar 

  • Düntsch, I., & Orłowska, E. (2011). An algebraic approach to preference relations. In de Swart, H. C. M., (Ed.), Proceedings of the 12th international conference on relational and algebraic methods in computer science (RAMiCS 12). Lecture notes in computer science (Vol. 6663, pp. 141–147). Berlin: Springer. MR2913845.

    Google Scholar 

  • Düntsch, I., & Orłowska, E. (2019). A discrete representation of lattice frames. In Blackburn, P., Lorini, E., & Guo, M., (Eds.), Logic, rationality, and interaction. LORI 2019. LNCS (Vol. 11813). Berlin: Springer. MR4019594.

    Google Scholar 

  • Düntsch, I., Orłowska, E., & Radzikowska, A. (2003). Lattice-based relation algebras and their representability. In H. de Swart, E. Orłowska, G. Schmidt, & M. Roubens (Eds.), Theory and application of relational structures as knowledge instruments (Vol. 2929, pp. 231–255)., Lecture notes in computer science Springer: Heidelberg.

    Chapter  Google Scholar 

  • Düntsch, I., Orłowska, E., & van Alten, C. (2016). Discrete dualities for n-potent MTL-algebras and 2-potent BL-algebras. Fuzzy Sets and Systems, 292, 203–214. MR3471217.

    Google Scholar 

  • Dzik, W., Orłowska, E., & van Alten, C. (2006). Relational representation theorems for general lattices with negations. In R. A. Schmidt (Ed.), Relations and Kleene algebra in computer science. Lecture notes in computer science (4136th ed., pp. 162–176). Berlin: Springer.

    Google Scholar 

  • Freese, R., & McKenzie, R. (1987). Commutator theory for congruence modular varieties. Cambridge: Cambridge University Press.

    Google Scholar 

  • Georgiev, D. (2006). An implementation of the algorithm SQEMA for computing first-order correspondences of modal formulas. Master’s thesis, Sofia University, Faculty of Mathematics and Computer Science.

    Google Scholar 

  • Goldblatt, R. (1974a). Metamathematics of modal logic. Bulletin of the Australian Mathematical Society, 10, 479–480.

    Article  Google Scholar 

  • Goldblatt, R. (1974b). Semantic analysis of orthologic. Journal of Philosophical Logic, 3, 19–35.

    Article  Google Scholar 

  • Goldblatt, R. (1975). The Stone space of an ortholattice. Bulletin of the London Mathematical Society, 7, 45–48.

    Article  Google Scholar 

  • Goldblatt, R. (1984). Orthomodularity is not elementary. The Journal of Symbolic Logic, 49(2), 401–404.

    Article  Google Scholar 

  • Goranko, V. (1990). Modal definability in enriched languages. Notre Dame Journal of Formal Logic, 31(1), 81–105.

    Google Scholar 

  • Hartonas, C. (2019). Discrete duality for lattices with modal operators. Journal of Logic and Computation, 29(1), 71–89.

    Article  Google Scholar 

  • Hartonas, C., & Dunn, J. M. (1993). Duality theorems for partial orders, semilattices, Galois connections and lattices. Preprint IULG-93-26, Indiana University Logic Group.

    Google Scholar 

  • Hartung, G. (1992). A topological representation of lattices. Algebra Universalis, 29, 273–299.

    Article  Google Scholar 

  • Jónsson, B., & Tarski, A. (1951). Boolean algebras with operators I. American Journal of Mathematics, 73, 891–939.

    Article  Google Scholar 

  • Kalmbach, G. (1985). Orthomodular lattices. London: Academic.

    Google Scholar 

  • Kowalski, T., & Litak, T. (2008). Completions of GBL-algebras: Negative results. Algebra Universalis, 58, 373–384.

    Article  Google Scholar 

  • McCune, W. (2005–2010). Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/.

  • Orłowska, E., & Rewitzky, I. (2007). Discrete duality and its applications to reasoning with incomplete information. Lecture Notes in Artificial Intelligence, 5785, 51–56.

    Google Scholar 

  • Orłowska, E., Rewitzky, I., & Radzikowska, A. (2015). Dualities for structures of applied logics. Studies in logic (Vol. 56). College Publications.

    Google Scholar 

  • Priestley, H. A. (1970). Representation of distributive lattices by means of ordered Stone spaces. Bulletin of the London Mathematical Society, 2, 186–190.

    Article  Google Scholar 

  • Rédei, M. (2009). The Birkhoff–von Neumann concept of quantum logic. In Engesser, K., Gabbay, D. M., & Lehmann, D., (Eds.), Handbook of quantum logic and quantum structures: Quantum logic (pp. 1–22). Elsevier.

    Google Scholar 

  • Stone, M. (1937). Topological representations of distributive lattices and Brouwerian logics. Časopis Pěst. Mat., 67, 1–25.

    Google Scholar 

  • Urquhart, A. (1978). A topological representation theorem for lattices. Algebra Universalis, 8, 45–58.

    Article  Google Scholar 

  • Urquhart, A. (1996). Duality for algebras of relevant logics. Studia Logica, 56, 263–276.

    Article  Google Scholar 

  • Urquhart, A. (2019). Relevant implication and ordered geometry. The Australasian Journal of Logic, 16(8), 342–354.

    Article  Google Scholar 

  • van Benthem, J. (1984). Correspondence theory. In D. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (Vol. III, pp. 325–408). Dordrecht: Reidel.

    Google Scholar 

Download references

Acknowledgements

We dedicate this article to Alasdair Urquhart, our friend and esteemed colleague, on the occasion of his 75th birthday. His work has been a valuable source of inspiration for us for many years. We also thank the second reader for her valuable comments. I. Düntsch gratefully acknowledges support by the National Natural Science Foundation of China, Grant No. 61976053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Düntsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Düntsch, I., Orłowska, E. (2022). Application of Urquhart’s Representation of Lattices to Some Non–classical Logics. In: Düntsch, I., Mares, E. (eds) Alasdair Urquhart on Nonclassical and Algebraic Logic and Complexity of Proofs. Outstanding Contributions to Logic, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-71430-7_13

Download citation

Publish with us

Policies and ethics