Skip to main content
Log in

The quantization of the Hamiltonian in curved space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The construction of the quantum-mechanical Hamiltonian by canonical quantization is examined. The results are used to enlighten examples taken from slow nuclear collective motion. Hamiltonians, obtained by a thoroughly quantal method (generator-coordinate method) and by the canonical quantization of the semiclassical Hamiltonian, are compared. The resulting simplicity in the physics of a system constrained to lie in a curved space by the introduction of local Riemannian coordinates is emphasized. In conclusion, a parallel is established between the result for various coordinates and a proposed procedure for quantizing the semiclassical Hamiltonian for a single coordinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Sherwell,Am. J. Phys. 27, 16 (1959).

    Google Scholar 

  2. L. Cohen,J. Math. Phys. 11, 3296 (1970).

    Google Scholar 

  3. F. J. Testa,J. Math. Phys. 12, 1471 (1971).

    Google Scholar 

  4. D. L. Hill and J. A. Wheeler,Phys. Rev. 89, 1102 (1953); J. J. Griffin and J. A. Wheeler,Phys. Rev. 108, 311 (1957).

    Google Scholar 

  5. C. W. Wong,Phys. Rep. 15, 283 (1975).

    Google Scholar 

  6. P. Ring and P. Schuck,The Nuclear Many-Body Problem (Springer, New York, 1980).

    Google Scholar 

  7. K. Goeke and P. G. Reinhard,Ann. Phys. 112 328 (1978).

    Google Scholar 

  8. B. S. DeWitt,Phys. Rev. 85, 653 (1952).

    Google Scholar 

  9. J. S. Dowker and I. W. Mayes,Nucl. Phys. B 29, 259 (1971).

    Google Scholar 

  10. J. M. Domingos and M. H. Caldeira,Found. Phys. 14, 147 (1984).

    Google Scholar 

  11. S. Helgason,Differential Geometry and Symmetric Space (Academic Press, New York, 1962).

    Google Scholar 

  12. M. Reed and B. Simon,Methods of Modern Mathematical Physics (Academic Press, New York, 1972), Vol. 1.

    Google Scholar 

  13. B. Simon, inMathematics of Contemporary Physics, R. F. Streater, ed. (Academic Press, New York, 1972).

    Google Scholar 

  14. M. Reed and B. Simon,Methods of Modern Mathematical Physics (Academic Press, New York, 1975), Vol. 2.

    Google Scholar 

  15. T. Kato,Suppl. Prog. Theor. Phys. 40, 3 (1967).

    Google Scholar 

  16. B. Podolsky,Phys. Rev. 32, 812 (1928).

    Google Scholar 

  17. B. S. Dewitt,Rev. Mod. Phys. 29, 377 (1957).

    Google Scholar 

  18. K. S. Cheng,J. Math. Phys. 13, 1723 (1972).

    Google Scholar 

  19. K. Tanabe and K. Sugawara-Tanabe,Phys. Rev. C 14, 1963 (1976).

    Google Scholar 

  20. B. G. Giraud and D. J. Rowe,Nucl. Phys. A 330, 352 (1979).

    Google Scholar 

  21. L. Ferreira and M. H. Caldeira,Nucl. Phys. A 189, 250 (1972).

    Google Scholar 

  22. F. Villars, inProceedings of the International Conference on Nuclear Self-Consistent Fields, Trieste, G. Ripka and M. Porneuf, eds. (North-Holland, Amsterdam, 1975).

    Google Scholar 

  23. F. Villars,Nucl. Phys. A 285, 269 (1977).

    Google Scholar 

  24. M. H. Caldeira and J. M. Domingos,Prog. Theor. Phys. 61, 1342 (1979).

    Google Scholar 

  25. A. Alves, L. P. Brito, M. H. Caldeira, J. M. Domingos, P. Martins, H. Pascoal, J. da Providencia, M. C. Ruivo, E. M. Silva, C. A. Sousa, and J. N. Urbano,Prog. Theor. Phys. 58, 223 (1977).

    Google Scholar 

  26. P. G. Reinhard,Nucl. Phys. A 252, 120 (1975).

    Google Scholar 

  27. P. G. Reinhard,Nucl. Phys. A 261, 291 (1976).

    Google Scholar 

  28. K. Goeke and P. G. Reinhard,Ann. Phys. 124, 249 (1980).

    Google Scholar 

  29. C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation (Freeman, San Francisco, 1973).

    Google Scholar 

  30. S. I. Ben-Abraham and A. Lonke,J. Math. Phys. 14, 1935 (1973); G. A. Ringwood,J. Phys. A 9, 1253 (1976).

    Google Scholar 

  31. J. M. Eisenberg and W. Greiner,Nuclear Models (North-Holland, Amsterdam, 1970). Vol. 1.

    Google Scholar 

  32. O. Veblen,Invariants of Quadratic Differential Forms (Cambridge University Press, Cambridge, 1962).

    Google Scholar 

  33. L. P. Eisenhart,Riemannian Geometry (Princeton University Press, Princeton, 1966).

    Google Scholar 

  34. R. D. Richtmyer,Principles of Advanced Mathematical Physics (Springer, New York, 1978), Vol. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Partially supported by Fundação Calouste Gulbenkian, Lisboa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domingos, J.M., Caldeira, M.H. The quantization of the Hamiltonian in curved space. Found Phys 14, 607–623 (1984). https://doi.org/10.1007/BF00738744

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00738744

Keywords

Navigation