Skip to main content

Evolution of Specialization and Ecological Character Displacement: Metabolic Plasticity Matters

  • Chapter
Current Themes in Theoretical Biology

Abstract

An important question in evolutionary biology, especially with respect to herbivorous arthropods, is the evolution of specialization. In a previous paper the combined evolutionary dynamics of specialization and ecological character displacement was studied, focusing on the role of herbivore foraging behaviour. In this paper the robustness of these results is examined with respect to the assumption about the (metabolic) feeding efficiency function, changing it from a fixed to a plastic response. For low specialization costs, the model yields qualitatively similar results. Through the process of evolutionary branching, the herbivore population radiates into many specialized phenotypes for basically any level of sub-optimal foraging (where plant utilization is to some degree determined by the relative growth rate on each plant type). However, for an increased cost for specialization, the model loses its primary evolutionary equilibrium point. In this part of the parameter space there is run-away selection towards the ultimate generalist strategy. Under the conditions for evolutionary branching, the model predicts host race formation and sympatric speciation in herbivorous arthropods when mating is host-plant associated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agrawal, A. A., F. Vala and M. W. Sabelis (2002). Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite: adaptive plasticity? American Naturalist 159: 553–565.

    Article  Google Scholar 

  • Berenbaum, M. R. (1996). Introduction to the symposium: on the evolution of specialization. American Naturalist 148: S78–S83.

    Article  Google Scholar 

  • Bernays, E. and M. Graham (1988). On the evolution of host specificity in phytophagous arthropods. Ecology 69: 886–892.

    Article  Google Scholar 

  • Bernays, E. A. and R. F. Chapman (1994). Host-Plant Selection by Phytophagous Insects. Chapman & Hall, New York.

    Google Scholar 

  • Bush, G. L. (1975). Modes of animal speciation. Annual Review of Ecology and Systematics 6: 339–364.

    Article  Google Scholar 

  • Bush, G. L. (1994). Sympatric speciation in animals: new wine in old bottles. Trends in Ecology and Evolution 9: 285–288.

    Article  Google Scholar 

  • Chapman, R. F. (1982). Chemoreception: the significance of receptor numbers. Advances in Insect Physiology 16: 247–356.

    Article  Google Scholar 

  • Chatzivasileiadis, E. A., M. Egas and M. W. Sabelis (2001). Resistance to 2-tridecanone in Tetranychus urticae: effects of induced resistance, cross-resistance and heritability. Experimental and Applied Acarology 25:717–730.

    Article  Google Scholar 

  • Dethier, V. G. (1954). Evolution of feeding preferences in phytophagous insects. Evolution 8: 33–54.

    Article  Google Scholar 

  • Dieckmann, U. (1997). Can adaptive dynamics invade? Trends in Ecology and Evolution 12: 128–131.

    Article  Google Scholar 

  • Dieckmann, U. and R. Law (1996). The dynamical theory of coevolution: A derivation from stochastic ecological processes. Journal of Mathematical Biology 34: 579–612.

    Google Scholar 

  • Dieckmann, U. and M. Doebeli (1999). On the origin of species by sympatric speciation. Nature 400: 354–357.

    Article  Google Scholar 

  • Dieckmann, U., P. Marrow and R. Law (1995). Evolutionary cycling in predator-prey interactions: Population dynamics and the red queen. Journal of Theoretical Biology 178: 91–102.

    Article  Google Scholar 

  • Doebeli, M. and U. Dieckmann (2000). Evolutionary branching and sympatric speciation caused by different types of ecological interactions. American Naturalist 156: S77–S101.

    Article  Google Scholar 

  • Doebeli, M. and U. Dieckmann (2003). Speciation along environmental gradients. Nature 421: 259–264.

    Article  Google Scholar 

  • Drossel, B. and A. McKane (2000). Competitive speciation in quantitative genetic models. Journal of Theoretical Biology 204: 467–478.

    Article  Google Scholar 

  • Dukas, R. and E. A. Bernays (2000). Learning improves growth rate in grasshoppers. Proceedings of the National Academy of Sciences USA 97: 2637–2640.

    Article  Google Scholar 

  • Edmunds, G. F. and D. N. Alstad (1978). Coevolution in insect herbivores and conifers. Science 199: 941–945.

    Google Scholar 

  • Egas, M. and M. W. Sabelis (2001). Adaptive learning of host preference in a herbivorous arthropod. Ecology Letters 4: 190–195.

    Article  Google Scholar 

  • Egas, M., D.-J. Norde and M. W. Sabelis (2003). Adaptive learning in arthropods: spider mites learn to distinguish food quality. Experimental and Applied Acarology 30: 233–247.

    Article  Google Scholar 

  • Egas, M., U. Dieckmann and M. W. Sabelis (2004a). Evolution restricts the coexistence of specialists and generalists — the role of trade-off structure. American Naturalist: 163: 518–531.

    Article  Google Scholar 

  • Egas, M., M. W. Sabelis and U. Dieckmann (2004b). Evolution of specialization and ecological character displacement of herbivores along a gradient of plant quality. Evolution, submitted.

    Google Scholar 

  • Egas, M., M. W. Sabelis, F. Vala and I. Lesna (2004c). Adaptive speciation in agricultural pests. In: Dieckmann, U., J. A. J. Metz, M. Doebeli and D. Tautz (Eds), Adaptive Speciation. Cambridge University Press, Cambridge, in press.

    Google Scholar 

  • Ehrlich, P. R. and P. H. Raven (1964). Butterflies and plants: a study in coevolution. Evolution 18: 586–608.

    Article  Google Scholar 

  • Farrell, B. D. (1998). “Inordinate fondness” explained: Why are there so many beetles? Science 281: 555–559.

    Article  Google Scholar 

  • Farrell, B. D. and C. Mitter (1990). Phylogenesis of insect plant interactions — have Phyllobrotica leaf beetles (Chrysomelidae) and the Lamiales diversified in parallel. Evolution 44: 1389–1403.

    Article  Google Scholar 

  • Farrell, B. D. and C. Mitter (1994). Adaptive radiation in insects and plants: time and opportunity. American Zoologist 34: 57–69.

    Google Scholar 

  • Felsenstein, J. (1981). Skepticism towards Santa Rosalia, or why are there so few kinds of animals? Evolution 35: 124–138.

    Article  Google Scholar 

  • Fox, L. R. and P. A. Morrow (1981). Specialization: species property or local phenomenon? Science 211: 887–893.

    Google Scholar 

  • Futuyma, D. J. and F. Gould (1979). Associations of plants and insects in a deciduous forest. Ecological Monographs 49: 33–50.

    Article  Google Scholar 

  • Futuyma, D. J. and S. S. McCafferty (1990). Phylogeny and the evolution of host plant associations in the leaf beetle genus Ophraella. Evolution 44: 1885–1913.

    Article  Google Scholar 

  • Futuyma, D. J. and G. Moreno (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics 19: 207–233.

    Article  Google Scholar 

  • Futuyma, D. J., M. C. Keese and D. J. Funk (1995). Genetic constraints on macroevolution: the evolution of host affiliation in the leaf beetle genus Ophraella. Evolution 49: 797–809.

    Article  Google Scholar 

  • Geritz, S. A. H. and É. Kisdi (2000). Adaptive dynamics of diploid, sexual populations and the evolution of reproductive isolation. Proceedings of the Royal Society London B Biological Sciences 267: 1671–1678.

    Article  Google Scholar 

  • Geritz, S. A. H., J. A. J. Metz, É. Kisdi and G. Meszéna (1997). Dynamics of adaptation and evolutionary branching. Physical Review Letters 78: 2024–2027.

    Article  Google Scholar 

  • Geritz, S. A. H., É. Kisdi, G. Meszéna and J. A. J. Metz (1998). Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology 12: 35–57.

    Article  Google Scholar 

  • Jaenike, J. (1990). Host specialization in phytophagous insects. Annual Review of Ecology and Systematics 21: 243–273.

    Article  Google Scholar 

  • Krivan, V. (1997). Dynamic ideal free distribution: effects of optimal patch choice on predator-prey dynamics. American Naturalist 149: 164–178.

    Article  Google Scholar 

  • Levins, R. (1962). Theory of fitness in a heterogeneous environment. I. The fitness set and adaptive function. American Naturalist 96: 361–373.

    Article  Google Scholar 

  • Levins, R. and R. H. MacArthur (1969). An hypothesis to explain the incidence of monophagy. Ecology 50: 910–911.

    Article  Google Scholar 

  • Magowski, W., M. Egas, J. Bruin and M. W. Sabelis (2003). Intraspecific variation in induction of feeding preference and performance in a herbivorous mite. Experimental and Applied Acarology 29: 13–25.

    Article  Google Scholar 

  • May, R. M. and R. H. MacArthur (1972). Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences USA 69: 1109–1113.

    Google Scholar 

  • Metz, J. A. J., R. M. Nisbet and S. A. H. Geritz (1992). How should we define “fitness” for general ecological scenarios? Trends in Ecology and Evolution 7: 198–202.

    Article  Google Scholar 

  • Metz, J. A. J., S. A. H. Geritz, G. Meszéna, F. J. A. Jacobs and J. S. van Heerwaarden (1996). Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: Van Strien, S. J. and S. M. Verduyn Lunel (Eds), Stochastic and Spatial Structures of Dynamical Systems. pp. 183–231. North Holland, Amsterdam.

    Google Scholar 

  • Mopper, S. (1996). Adaptive genetic structure in phytophagous insect populations. Trends in Ecology and Evolution 11: 235–238.

    Article  Google Scholar 

  • Moran, N. A. and T. G. Whitham (1990). Differential colonization of resistant and susceptible host plants: Pemphigus and Populus. Ecology 71: 1059–1067.

    Article  Google Scholar 

  • Nomikou, M., A. Janssen and M. W. Sabelis (2003). Herbivore host plant selection: whitefly learns to avoid host plants that are unsafe for her offspring. Oecologia 136: 484–488.

    Article  Google Scholar 

  • Orr, M. R. and T. B. Smith (1998). Ecology and speciation. Trends in Ecology and Evolution 13: 502–506.

    Article  Google Scholar 

  • Rauscher, M. D. (1983). Alteration of oviposition behavior by Battus philenor butterflies in response to variation in host-plant density. Ecology 64: 1028–1034.

    Article  Google Scholar 

  • Rauscher, M. D. and D. R. Papaj (1983). Demographic consequences of discrimination among conspecific host plants by Battus philenor butterflies. Ecology 64: 1402–1410.

    Article  Google Scholar 

  • Rice, W. R. (1987). Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character. Evolutionary Ecology 1: 301–314.

    Article  Google Scholar 

  • Robertson, H. G. (1987). Oviposition site selection in Cactoblastis cactorum (Lepidoptera): constraints and compromises. Oecologia 73: 601–608.

    Article  Google Scholar 

  • Rosenzweig, M. L. (1981). A theory of habitat selection. Ecology 62: 327–335.

    Article  Google Scholar 

  • Rosenzweig, M. L. (1987). Habitat selection as a source of biological diversity. Evolutionary Ecology 1: 315–330.

    Article  Google Scholar 

  • Schluter, D. (2000a). The Ecology of Adaptive Radiation. Oxford University Press, Oxford.

    Google Scholar 

  • Schluter, D. (2000b). Ecological character displacement in adaptive radiation. American Naturalist 156: S4–S16.

    Article  Google Scholar 

  • Schluter, D. (2001). Ecology and the origin of species. Trends in Ecology and Evolution 16: 372–380.

    Article  Google Scholar 

  • Schoonhoven, L. M., T. Jermy and J. J. A. van Loon (1998). Insect-Plant Biology: From Physiology to Evolution. Chapman and Hall, London.

    Google Scholar 

  • Stephens, D. W. and J. R. Krebs (1986). Foraging Theory. Princeton University Press, Princeton.

    Google Scholar 

  • Strong, D. R., J. H. Lawton and R. Southwood (1984). Insects on Plants — Community Patterns and Mechanisms. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Szentesi, A. and T. Jermy (1990). The role of experience in host plant choice by phytophagous insects. In: Bernays, E. A. (Ed.). Insect-Plant Interactions. Vol. II. CRC Press, Boca Raton. pp 39–74.

    Google Scholar 

  • Termonia, A., T. H. Hsiao, J. M. Pasteels and M. C. Milinkovitch (2001). Feeding specialization and host-derived chemical defense in Crysomeline leaf beetles did not lead to an evolutionary dead end. Proceedings of the National Academy of Science USA 98: 3909–3914.

    Article  Google Scholar 

  • Thompson, J. N. (1994). The Coevolutionary Process. University of Chicago Press, Chicago.

    Google Scholar 

  • Underwood, D. L. A. (1994). Intraspecific variability in host plant quality and ovipositional preferences in Eucheira socialis (Lepidoptera: Pieridae). Ecological Entomology 19: 245–256.

    Google Scholar 

  • Valladares, G. and J. H. Lawton (1991). Host-plant selection in the holly leaf-miner: does mother know best? Journal of Animal Ecology 60: 227–240.

    Google Scholar 

  • Van Kampen, N. G. (1981). Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam.

    Google Scholar 

  • Via, S. (2001). Sympatric speciation in animals: the ugly duckling grows up. Trends in Ecology and Evolution 16: 381–390.

    Article  Google Scholar 

  • Wainhouse, D., and R. S. Howell (1983). Intraspecific variation in beech scale populations and in susceptibility of their host Fagus sylvatica. Ecological Entomology 8: 351–359.

    Article  Google Scholar 

  • Whitham, T. G. (1983). Host manipulation of parasites: within plant variation as a defense against rapidly evolving pests. In: Denno, R. F., and M. S. McClure (Eds). Variable plants and herbivores in natural and managed systems. Academic Press, New York. pp. 15–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Egas, M. (2005). Evolution of Specialization and Ecological Character Displacement: Metabolic Plasticity Matters. In: Reydon, T.A., Hemerik, L. (eds) Current Themes in Theoretical Biology. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2904-7_11

Download citation

Publish with us

Policies and ethics