Skip to main content
Log in

Eric Davidson and deep time

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

Eric Davidson had a deep and abiding interest in the role developmental mechanisms played in generating evolutionary patterns documented in deep time, from the origin of the euechinoids to the processes responsible for the morphological architectures of major animal clades. Although not an evolutionary biologist, Davidson’s interests long preceded the current excitement over comparative evolutionary developmental biology. Here I discuss three aspects at the intersection between his research and evolutionary patterns in deep time: First, understanding the mechanisms of body plan formation, particularly those associated with the early diversification of major metazoan clades. Second, a critique of early claims about ancestral metazoans based on the discoveries of highly conserved genes across bilaterian animals. Third, Davidson’s own involvement in paleontology through a collaborative study of the fossil embryos from the Ediacaran Doushantuo Formation in south China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arendt, D., Denes, A. S., Jekely, G., & Tessmar-Raible, K. (2008). The evolution of nervous system centralization. Philosophical Transactions of the Royal Society, B, 363, 1523–1528.

    Article  Google Scholar 

  • Arendt, D., & Wittbrodt, J. (2001). Reconstructing the eyes of Urbilateria. Proceedings of the Royal Society London, Series B, 356, 1545–1563.

    Article  Google Scholar 

  • Bengtson, S., & Budd, G. (2004). Comment on “Small bilaterian fossils from 40 to 55 million years before the Cambrian”. Science, 306, 1291a.

    Article  Google Scholar 

  • Bengtson, S., Cunningham, J. A., Yin, C. Y., & Donoghue, P. C. J. (2012). Merciful death for the “earliest bilaterian,” Vernanimalcula. Evolution & Development, 14, 421–427.

    Article  Google Scholar 

  • Birnbaum, D., Coulier, F., Pebusque, M.-J., & Pontarotti, P. (2000). “Paleogenomics”: Looking in the past into the future. Journal of Experimental Zoology (Molecular and Developmental Evolution), 288, 21–22.

    Article  Google Scholar 

  • Bottjer, D. J. (2016). Eric Davidson’s career as a paleontologist. Developmental Biology, 412, S38–S40. doi:10.1016/j.ydbio.2016.01.026.

    Article  Google Scholar 

  • Bottjer, D. J., Davidson, E. H., Peterson, K. J., & Cameron, R. A. (2006). Paleogenomics of echinoderms. Science, 314, 956–960.

    Article  Google Scholar 

  • Britten, R. J., & Davidson, E. H. (1969). Gene regulation for higher cells: A theory. Science, 165, 349–357.

    Article  Google Scholar 

  • Britten, R. J., & Davidson, E. H. (1971). Repetitive and non-repetitive DNA sequences and speculation on the origins of evolutionary novelty. Quarterly Review of Biology, 46, 111–138.

    Article  Google Scholar 

  • Cameron, A. R., Peterson, K. J., & Davidson, E. H. (1998). Developmental gene regulation and the evolution of large animal body plans. American Zoologist, 38, 609–620.

    Article  Google Scholar 

  • Carroll, S., Grenier, J., & Weatherbee, S. (2001). From DNA to diversity. Malden: Blackwell Scientific.

    Google Scholar 

  • Chen, J. Y., Bottjer, D. J., Davidson, E. H., Li, G., Gao, F., Cameron, R. A., et al. (2010). Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Research, 179, 221. doi:10.1016/j.precamres.2010.03.001.

    Article  Google Scholar 

  • Chen, J. Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., et al. (2004). Small bilaterian fossils from 40 to 55 million years before the cambrian. Science, 305, 218–222.

    Article  Google Scholar 

  • Chen, J. Y., Oliveri, P., Gao, F., Dornbos, S. Q., Li, C. W., Bottjer, D. J., et al. (2002). Precambrian animal life: Probable developmental and adult cnidarian forms from Southwest China. Developmental Biology, 248, 182–196.

    Article  Google Scholar 

  • Chen, J. Y., Oliveri, P., Li, C.-W., Zhou, G. Q., Gao, F., Hagadorn, J. W., et al. (2000). Precambrian animal diversity: Putative phosphatized embryos from the Doushantuo Formation of China. Proceedings of the National Academy of Sciences, USA, 97, 4457–4462.

    Article  Google Scholar 

  • Davidson, E. H. (1986). Gene activity in early development (3rd ed.). Orlando, FL: Academic Press.

    Google Scholar 

  • Davidson, E. H. (1989). Lineage-specific gene-expression and the regulative capacities of the sea-urchin embryo—a proposed mechanism. Development, 105, 421–445.

    Google Scholar 

  • Davidson, E. H. (1990). How embryos work—a comparative view of diverse modes of cell fate specification. Development, 108, 365–389.

    Google Scholar 

  • Davidson, E. H. (1991). Spatial mechanisms of gene-regulation in metazoan embryos. Development, 113, 1–26.

    Google Scholar 

  • Davidson, E. H. (2001). Genomic regulatory systems. San Diego: Academic Press.

    Google Scholar 

  • Davidson, E. H. (2006). The regulatory genome. San Diego: Academic Press.

    Google Scholar 

  • Davidson, E. H., & Erwin, D. H. (2006). Gene regulatory networks and the evolution of animal body plans. Science, 311, 796–800.

    Article  Google Scholar 

  • Davidson, E. H., Peterson, K. J., & Cameron, R. A. (1995). Origin of bilaterian body plans: Evolution of developmental mechanisms. Science, 270, 1319–1325.

    Article  Google Scholar 

  • Davidson, E. H., Rast, J. P., Oliveri, P., Ransick, A., Calestani, C., Yuh, C. H., et al. (2002). A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. Developmental Biology, 246, 162–190.

    Article  Google Scholar 

  • De Robertis, E. M., & Sasai, Y. (1996). A common plan for dorsoventral patterning in bilateria. Nature, 380, 37–40.

    Article  Google Scholar 

  • Donoghue, P. C. J., Bengtson, S., Dong, X. P., Gostling, N. J., Huldtgren, T., Cunningham, J. A., et al. (2006). Synchrotron X-ray tomographic microscopy of fossil embryos. Nature, 442, 680–683.

    Article  Google Scholar 

  • Dornbos, S. Q., Bottjer, D. J., Chen, I. A., Oliveri, P., Gao, F., & Li, C.-W. (2005). Precambrian animal life: taphonomy of phosphatized metazoan embryos from southwest China. Lethaia, 38, 101–109.

    Article  Google Scholar 

  • Erkenbrack, E. M., Ako-Asare, K., Miller, E., Tekelenburg, S., Thompson, J. R., & Romano, L. (2016). Ancestral state reconstruction by comparative analysis of a GRN kernel operating in echinoderms. Developmental Genes and Evolution, 226, 37–45. doi:10.1007/s00427-015-0527-y.

    Article  Google Scholar 

  • Erkenbrack, E. M., & Davidson, E. H. (2015). Evolutionary rewiring of gene regulatory network linkages at divergence of the echinoid subclasses. Proceedings of the National Academy of Sciences, USA, 112, E4075–E4084. doi:10.1073/pnas.1509845112.

    Article  Google Scholar 

  • Erwin, D. H. (2011). Evolutionary uniformitarianism. Developmental Biology, 357, 27–34.

    Article  Google Scholar 

  • Erwin, D. H., & Davidson, E. H. (2002). The last common bilaterian ancestor. Development, 129, 3021–3032.

    Google Scholar 

  • Erwin, D. H., & Davidson, E. H. (2009). The evolution of hierarchical gene regulatory networks. Nature Reviews Genetics, 10, 141–148. doi:10.1038/nrg2499.

    Article  Google Scholar 

  • Erwin, D. H., Valentine, J. W., & Jablonski, D. (1997). The origin of animal bodyplans. American Scientist, 85, 126–137.

    Google Scholar 

  • Gao, F., & Davidson, E. H. (2008). Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. Proceedings of the National Academy of Sciences, USA, 105, 6091–6096.

    Article  Google Scholar 

  • Hinman, V. F., Nguyen, A. T., Cameron, R. A., & Davidson, E. H. (2003). Developmental gene regulatory network architecture across 500 million years of echinoderm evolution. Proceedings of the National Academy of Sciences, USA, 100, 13356–13361.

    Article  Google Scholar 

  • Hinman, V. F., Nguyen, A., & Davidson, E. H. (2007). Caught in the evolutionary act: Precise cis-regulatory basis of difference in the organization of gene networks of sea stars and sea urchins. Developmental Biology, 312, 584–595.

    Article  Google Scholar 

  • Lichtneckert, R., & Reichert, H. (2005). Insights into the urbilaterian brain: Conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity, 94, 465–477.

    Article  Google Scholar 

  • Lowe, C. J., Terasaki, M., Wu, M. M., Freeman, R. M., Jr., Runft, L., Kwan, K., et al. (2006). Dorsoventral patterning in hemichordates: Insights into early chordate evolution. PLoS Biology, 4, e291.

    Article  Google Scholar 

  • Miller, D. J., Ball, E. E., & Technau, U. (2005). Cnidarians and ancestral gene complexity in the animal kingdom. Trends in Genetics, 21, 536–539.

    Article  Google Scholar 

  • Nielsen, C. (2013). Life cycle evolution: Was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evolutionary Biology. doi:10.1186/1471-2148-13-171.

    Google Scholar 

  • Peter, I. S., & Davidson, E. H. (2015). Genomic control processes. Development and evolution. London: Academic Press.

    Google Scholar 

  • Peterson, K. J., Arenas-Mena, C., & Davidson, E. H. (2000a). The A/P axis in echinoderm ontogeny and evolution: Evidence from fossils and molecules. Evolution & Development, 2, 93–101.

    Article  Google Scholar 

  • Peterson, K. J., Cameron, A. R., & Davidson, E. H. (1997). Set-aside cells in maximal indirect development: Evolutionary and developmental significance. BioEssays, 19, 623–631.

    Article  Google Scholar 

  • Peterson, K. J., Cameron, R. A., & Davidson, E. H. (2000b). Bilaterian origins: Significance of new experimental observations. Developmental Biology, 219, 1–17.

    Article  Google Scholar 

  • Peterson, K. J., & Davidson, E. H. (2000). Regulatory evolution and the origin of the bilaterians. Proceedings of the National Academy of Sciences, USA, 97, 4430–4433.

    Article  Google Scholar 

  • Pueyo, J. I., & Couso, J. P. (2005). Parallels between the proximal-distal development of vertebrate and arthropod appendages: Homology without an ancestor? Current Opinion in Genetics & Development, 15(4), 439.

    Article  Google Scholar 

  • Rothenberg, E. V. (2016). Eric Davidson: Steps to a gene regulatory network for development. Developmental Biology, 412, S7–S19.

    Article  Google Scholar 

  • Scott, M. P. (1994). Intimations of a creature. Cell, 79, 1121–1124.

    Article  Google Scholar 

  • Shenk, M. A., & Steel, M. A. (1994). A molecular shapshot of the metazoan ‘Eve’. Trends in Biochemical Science, 18, 459–463.

    Article  Google Scholar 

  • Thompson, J. R., Petsios, E., Davidson, E. H., Erkenbrack, E. M., Gao, F., & Bottjer, D. J. (2015). Reorganization of sea urchin gene regulatory networks at least 268 million years ago as revealed by oldest fossil cidaroid echinoid. Scientific Reports. doi:10.1038/srep15541.

    Google Scholar 

  • Tweedt, S. M., & Erwin, D. H. (2015). Origin of metazoan developmental toolkits and their expression in the fossil record. In I. Ruiz-Trillo & A. M. Nedelcu (Eds.), Evolution of multicellularity (pp. 47–77). London: Academic Press.

    Google Scholar 

  • Valentine, J. W., & Campbell, C. A. (1975). Genetic regulation and the fossil record. American Scientist, 63, 673–680.

    Google Scholar 

  • Valentine, J. W., Jablonski, D., & Erwin, D. H. (1999). Fossils, molecules and embryos: New perspectives on the Cambrian explosion. Development, 126, 851–859.

    Google Scholar 

  • Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews Genetics, 8, 473–479.

    Article  Google Scholar 

  • Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton, NJ: Princeton University Press.

    Book  Google Scholar 

  • Xiao, S. H., Yun, Y., Knoll, A. H., & Bartley, J. K. (1998). Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391, 553–558.

    Article  Google Scholar 

  • Yin, Z. J., Zhu, M. Y., Davidson, E. H., Bottjer, D. J., Zhao, F. C., & Tafforeau, P. (2015). Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proceedings of the National Academy of Sciences, USA, 112, E1453–E1460. doi:10.1073/pnas.1414577112.

    Google Scholar 

  • Yuh, C. H., Bolouri, H., & Davidson, E. H. (2001). Cis-regulatory logic in the endo16 gene: Switching from a specification to a differentiation mode of control. Development, 128, 617–629.

    Google Scholar 

Download references

Acknowledgements

Earlier versions of this paper were presented at a workshop on “From Genome to Gene” at the Jacques Loeb Centre for the History and Philosophy of the Life Sciences at Ben Gurion University of the Negev in November 2015, and at a memorial symposium for Eric Davidson at Caltech in April 2016. I appreciate the invitation to contribute this paper from Ute Deichmann and Michel Morange. This paper incorporates research funded by the NASA National Astrobiology Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Erwin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erwin, D.H. Eric Davidson and deep time. HPLS 39, 29 (2017). https://doi.org/10.1007/s40656-017-0156-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40656-017-0156-z

Keywords

Navigation