Skip to main content
Log in

Fiction, possibility and impossibility: three kinds of mathematical fictions in Leibniz’s work

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

This paper is concerned with the status of mathematical fictions in Leibniz’s work and especially with infinitary quantities as fictions. Thus, it is maintained that mathematical fictions constitute a kind of symbolic notion that implies various degrees of impossibility. With this framework, different kinds of notions of possibility and impossibility are proposed, reviewing the usual interpretation of both modal concepts, which appeals to the consistency property. Thus, three concepts of the possibility/impossibility pair are distinguished; they give rise, in turn, to three concepts of mathematical fictions. Moreover, such a distinction is the base for the claim that infinitesimal quantities, as mathematical fictions, do not imply an absolute impossibility, resulting from self-contradiction, but a relative impossibility, founded on irrepresentability and on the fact that it does not conform to architectural principles. In conclusion, this “soft” impossibility of infinitesimals yields them, in Leibniz view, a presumptive or “conjectural” status.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Notes

  1. An analysis of the symbolic notion or concept can be found in Esquisabel (2012a, pp. 1–49). This topic connected to the question of the fictionalism of infinitesimals was dealt with in Esquisabel (2012b), and more recently it can be found in Rabouin and Arthur (2020, pp. 406–407).

  2. For a summary of the controversy in the seventeenth century, see Mancosu (1996, chap. 6) and Jesseph (1998, pp. 6–38). For the controversy with Newton regarding the attribution of its originality, see Sonar (2016).

  3. We will refer to Leibniz (1923) following the standard abbreviation: A, followed by series (in Roman numerals), volume (in Arabic numerals) and page number. Ex.: A VII 6, 600.

  4. For the moment, we consider both concepts as equivalent, but later it will be necessary to distinguish them.

  5. This phenomenon of vague or “global” understanding occurs mainly in verbal language, although it does not necessarily have to accompany every use of symbolic notions. See Esquisabel (2012a, pp. 10–18), where the distinction between two kinds of symbolic thought is proposed.

  6. Leibniz is not always terminologically consistent in relation to the distinction between notion and idea. Here “idea” must be understood in the sense of “notion” or “concept.”

  7. Its full title is Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec irrationales quantitates moratur, et singulare pro illis calculi genus, GM 5 220–233, originally published in Acta Eruditorum, 1684. French translation: Leibniz (1995, pp. 104–117).

  8. Regarding this question, it is worth mentioning that Levey (2008, pp. 123–128) exhibited three senses in which fictions can be conceived, without trying to unravel Leibniz’s own notion, but anachronistically, based on three ways in which scientific theories can be interpreted. Thus, he distinguished (1) “reductionism,” according to which Leibniz’s infinitesimal language can be reduced to a language that includes only finite terms (that is, the syncategorematic interpretation to which the author subscribes); (2) “pragmatism,” according to which the infinitesimal language is an adequate way, scientifically speaking, to describe the data that the theory attempts to organize, explain and predict; and (3) “ideal-theory instrumentalism,” according to which an infinitesimal is a device “for inferring meaningful results from meaningful premises” (p. 124).

  9. Leibniz seems to have developed this conception of mathematics as something “ideal” at the end of his Parisian period and especially in the 1680s. Cf. A II 2 75; A VI 4 991; GP 4 490, 561; GP 2 225/OFC 16B 1164, inter alia. For the question of the origins of the “ideal” conception of mathematical entities, see Esquisabel and Raffo Quintana (2020).

  10. It is outside the scope of this paper to explain the difficult connections between our thoughts and those of the divine mind.

  11. It may be surprising to say that infinitely small quantities could be incompatible with the principle of continuity. But we take that principle here in the sense of a principle of order, that is, nature should be orderly constructed (see, for example, A VI 3, 564–565, and GP 2 193; 282). Thus, to suppose the existence of infinitely small real quantities could entail the thought that motion would really be composed of infinitely small jumps in infinitely small parts of space and time, and this goes against the order of nature.

  12. In accordance with this and in an illustrative way, in the Parisian period Leibniz noted: “It is not admirable that the number of all numbers, all possibilities, all relations, that is, reflections, are not distinctly intelligible; in effect, they are imaginary and do not have anything that corresponds in reality [a parte rei]” (A VI 3, 399). However, there is also a difference between what is manifested in this passage and what he does later. For, in this passage epistemic elements prevail for possibility and impossibility, expressed in the fact that they “are not distinctly intelligible,” while the “logical” criterion based on consistency, which already appears in the Parisian period, is however much more clearly formulated after this period.

  13. Actually, Leibniz appeals to various ways of referring to infinitesimal or infinitely small quantities: “quantity smaller than any assignable quantity” is one of them, but there is a plurality of characterizations that are only apparently equivalent. Moreover, it can be shown that there is an evolution in the way that Leibniz characterizes infinitely small quantities. Although we cannot develop it here and we will do so in a later study, we maintain that the different ways of designating or characterizing infinitely small quantities denote an evolution in the way that Leibniz conceived of the mathematical function of such fictions.

  14. Apart from that, the notion of the infinitesimal that follows from the case of Numeri infiniti previously mentioned does not seem to coincide with the one we pointed out before: it is not a quantity smaller than any given one, but of a quantity smaller than any than can be given, or, as Leibniz literally says, a “last number.”

  15. That is, they can be applied in mathematics as fictions without problems and can be substituted by other methods, but they do not exist in the actual world. An anonymous referee has objected that, in the question of Leibniz’s treatment of infinitely small quantities, methodological and of existence questions must be distinguished, since Leibniz himself dealt with them separately. As an answer to this objection, we fully agree with this approach, as can be seen, for example, in a forthcoming paper of ours (Esquisabel and Raffo Quintana 2021). In the same way, our final brief reference to Leibniz’s solution of the continuum problem, namely, the distinction between an ideal continuum (or “syncategorematic,” in the sense of potential), and a real continuum, in which there is an infinite actual division, refers to the problem of existence, and not to methodological questions, regarding which Leibniz just appeals to infinitary fictions. On the other hand, it seems clear enough to us, as it is to Rabouin and Arthur (2020), that in his maturity Leibniz deals with the question of the justification for the introduction of infinitely small quantities by appealing to the principle of continuity.

  16. This role is often characterized in terms of introducing “ideal” concepts, as Sherry and Katz (2012) do. However, we think that the concept of “ideal,” which corresponds to the concept introduced in the geometry of the nineteenth century, should be applied, in the case of Leibniz, cum grano salis. As we could show, towards the last stage of his thought, Leibniz conceives that all mathematical entities, and not only infinitary ones, are “ideal.”

  17. One might wonder if other mathematical truths, different from those that rule our world, could be possible for Leibniz (as, for example, non-Euclidean geometries). The answer should apparently be negative, since mathematical truths are true in all possible worlds. But there are nuanced opinions on this topic. See, for example, Rescher 1981 and Debuiche and Rabouin 2019.

References

  • Arthur, R.T.W. 2009. Actual infinitesimals in Leibniz’s early thought. In The philosophy of the young Leibniz, ed. M. Kulstad, M. Laerke, and D. Snyder, 11–28. Stuttgart: Franz Steiner Verlag.

    Google Scholar 

  • Arthur, R.T.W. 2013. Leibniz’s syncategorematic infinitesimals. Archive for History of Exact Sciences 67: 553–593.

    Article  MathSciNet  MATH  Google Scholar 

  • Arthur, R.T.W. 2018. Leibniz’s syncategorematic actual infinite. In Infinity in early modern philosophy, ed. O. Nachtomy and R. Winegar, 155–179. Cham: Springer.

    Chapter  Google Scholar 

  • Bair, J., Ely R. Błaszczyk, P. Heinig, and M. Katz. 2018. Leibniz’s well-founded fictions and their interpretations. MatematychniStudii 49(2): 186–224.

    Google Scholar 

  • Bos, H. 1974. Differentials, higher-order differentials and the derivative in the Leibnizian calculus. Archive for History of Exact Sciences 14: 1–90.

    Article  MathSciNet  MATH  Google Scholar 

  • Brown, G. 1998. Who’s afraid of infinite number? The Leibniz Review 8: 113–125.

    Article  Google Scholar 

  • Brown, G. 2000. Leibniz on wholes, unities and infinite number. The Leibniz Review 10: 21–51.

    Article  Google Scholar 

  • Crippa, D. 2017. Leibniz and the impossibility of squaring the circle. In The dialogue between sciences, philosophy and engineering. New historical and epistemological insights. Homage to Gottfried W. Leibniz 1646–1716, ed. R. Pisano, M. Fichant, P. Bussotti, A.R.E. Oliveira, and E. Knobloch, 93–120. London: College Publications.

    Google Scholar 

  • Debuiche, V., and D. Rabouin. 2019. On the plurality of spaces in Leibniz. In Leibniz and the structure of sciences, ed. V. De Risi, 171–201. Cham: Springer.

    Chapter  MATH  Google Scholar 

  • Duchesnau, F. 1993. Leibniz et la méthode de la science. Paris: PUF.

    Google Scholar 

  • Duchesnau, F. 1994. La dynamique de Leibniz. Paris: Vrin.

    Google Scholar 

  • Duchesnau, F. 2019. Le recours aux príncipes architectoniques dans la Dynamica de Leibniz. Revue d’Histoire des Sciences 72(1): 39–62.

    Article  Google Scholar 

  • Esquisabel, O.M. 2012a. Representing and abstracting. An analysis of Leibniz’s concept of symbolic knowledge. In Symbolic knowledge from Leibniz to Husserl, ed. A. Lassalle Cassanave, 1–49. London: College Publications.

    Google Scholar 

  • Esquisabel, O.M. 2012b. Infinitesimales y conocimiento simbólico en Leibniz. Notae Philosophicae Scientiae Formalis 1(1): 66–79.

    Google Scholar 

  • Esquisabel, O.M. 2020. Analogías e invención matemática en Leibniz. El caso de la matemática infinitesimal. In La lógica de la analogía. Perspectivas actualessobre el rol de las analogías en ciencia y en filosofía, ed. G. Arroyo and M. Sisto. Los Polvorines: General Sarmiento, Universidad Nacional de General Sarmiento.

    Google Scholar 

  • Esquisabel, O., and F. Raffo Quintana. 2017. Leibniz in Paris: A discussion concerning the infinite number of all units. Revista Portuguesa de Filosofia 73(3–4): 1319–1342.

    Article  Google Scholar 

  • Esquisabel, O.M., and F. Raffo Quintana. 2020. Infinitos y filosofía natural en Leibniz (1672–1676). Anales del Seminario de Historia de la Filosofía 37(3): 425–435.

    Article  Google Scholar 

  • Esquisabel, O.M., and Raffo Quintana, Federico 2021. La doble perspectiva técnica y filosófica de Leibniz acerca de los infinitesimales: un camino hacia la idealidad de lo matemático. ÉNDOXA- Series filosóficas.

  • Fazio, R. 2016. La crítica de Leibniz a los números infinitos y su repercusión en la metafísica de los cuerpos. Theoria 31(2): 164–169.

    Google Scholar 

  • Grosholz, E. 2007. Representation and productive ambiguity in mathematics and the sciences. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Hess, H.-J. 1986. Zur Vorgeschichte der ‘Nova Methodus’ (1676–1684). In 300 Jahre “Nova Methodus” von G. W. Leibniz (1684–1984). Symposion der Leibniz-Gesellschaft im Congresscentrum “Leewenhorst” in Noordwijkerhout (Niederlande), 28. Bis 30. August 1984, A. Heinekamp (comp.) Studia Leibnitiana, Sonderheft 14, 64–102.

  • Ishiguro, H. 1990. Leibniz’s philosophy of logic and language. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jesseph, D.M. 1998. Leibniz on the foundations of the calculus: The question of the reality of infinitesimal magnitudes. Perspectives on Science 6: 6–38.

    Article  MathSciNet  MATH  Google Scholar 

  • Jesseph, D.M. 2008. Truth in fiction: Origins and consequences of Leibniz’s doctrine of infinitesimal magnitudes. In Infinitesimal differences: Controversies between Leibniz and his contemporaries, ed. D. Jesseph and U. Goldenbaum, 215–233. Berlin: Walter de Gruyter.

    Chapter  Google Scholar 

  • Jesseph, D.M. 2015. Leibniz on the elimination of infinitesimals. In G.W. Leibniz, interrelations between mathematics and philosophy, ed. N. Goethe, P. Beeley, and D. Rabouin, 189–205. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Jullien, V., ed. 2015. Seventeenth-century indivisibles revisited. Cham: Birkhäuser.

    MATH  Google Scholar 

  • Knobloch, E. 1993. Les courbesanalytiques simples chez Leibniz. Sciences et Techniques en Perspective 6: 74–96.

    MathSciNet  Google Scholar 

  • Knobloch, E. 1994. The infinite in Leibniz’s mathematics—The historiographical method of comprehension in context. In Trends in the historiography of science, ed. K. Gavroglu, J. Christianidisand, and E. Nicolaïdis, 266–278. Dordrecht: Kluwer.

    Google Scholar 

  • Knobloch, E. 2002. Leibniz’s rigorous foundation of infinitesimal geometry by means of Riemannian sums. Synthese 133(1–2): 43–57.

    MathSciNet  MATH  Google Scholar 

  • Leibniz, G.W. 1923 (A). Sämtliche Schriften und Briefe, editada por la Deutschen Akademie der Wissenschaften. Darmstadt (1923)-Leipzig (1938)—Berlin (1950 and ongoing): Akademie-Verlag.

  • Leibniz, G.W. 1846 (HOCD). Historia et origo calculi differentialis (ed. by C. I. Gerhardt). Hannover: Hahn.

  • Leibniz, G.W. 1849–1863 (GM). Mathematische Schriften (ed. by C. I. Gerhardt). Vol. 7. Berlin: A. H.W. Schmidt.

  • Leibniz, G.W. 1855. Die Geschichte der höheren Anlysis (C. I. Gerhardt). Halle: H.W. Schmidt.

  • Leibniz, G.W. 1875–1890 (GP). Die philosophischen Schriften von Gottfried Wilhelm Leibniz (ed. by C. I. Gerhardt), Vol. 7. Berlin: Weidmann.

  • Leibniz, G.W. 1920 (Child). The early mathematical manuscripts of Leibniz (translated from the latin texts published by Carl Immanuel Gerhardt with critical and historical notes by J. M. Child). Chicago: The Open Court Publishing Company.

  • Leibniz, G.W. 1992a. De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium es trignonometria sine tabulis (kritischherausgegeben und kommentiert von Eberhard Knobloch). Göttingen: Vandenhoedk & Ruprecht.

    Google Scholar 

  • Leibniz, G.W. 1992b. De summa rerum. Metaphysical Papers, 1675–1676 (translated with an introduction and notes by G. H. R. Parkinson). New Haven: Yale University Press.

    Book  Google Scholar 

  • Leibniz, G.W. 1995. Naissance du calculdifférentiel. 26 articles des Actaeruditorum (introduction, traductionet notes par Marc Parmentier). Paris: Vrin.

    Google Scholar 

  • Leibniz, G.W. 1996. New essays on human understanding (translated and edited by Peter Remnant and Jonathan Bennett). Cambridge: Cambridge University Press.

    Google Scholar 

  • Leibniz, G.W. 2001. The labyrinth of the continuum. Writings on the continuum problem, 1672–1686 (translated, edited, and with an introduction by Richard T. W. Arthur). New Haven: Yale University Press.

    Google Scholar 

  • Leibniz, G.W. 2004. Quadrature airthmétique du cercle, de l’ellipse et de l’hyperbole et la trigonométrie sans tables trigonométriques qui en est le corollaire (introduction, traduction et notes de Marc Parmentier, textelatinédité par Eberhard Knobloch). Paris: Vrin.

    MATH  Google Scholar 

  • Leibniz, G.W. 2005. Confessio philosophi. Papers concerning the problem of evil, 1671–1678 (translated, edited, and with an introduction by Robert C. Sleigh, Jr., additional contributions from Brandon Look and James Stam). New Haven: Yale University Press.

    Google Scholar 

  • Leibniz, G.W. 2007. The Leibniz–Des Bosses correspondence (translated, edited, and with an introduction by Brandon C. Look and Donald Rutherford). New Haven: Yale University Press.

    Google Scholar 

  • Leibniz, G.W. 2014. Obras Filosóficas y Científicas. 7A Escritos matemáticos (edited by Mary Sol de Mora Charles). Comares: Granada.

    Google Scholar 

  • Leibniz, G.W. 2016. De quadratura arithmetica circuli ellipseos et hyperbolae cujus corollarium es trignonometria sine tabulis (herausgegeben und mit einem Nachwort versehen von Eberhard Knobloch, aus dem Lateinisch übersetzt von Otto Hamborg). Berlin: Springer.

    Google Scholar 

  • Leibniz, G.W. 2018. MathesisUniversalis. Écritssur la Mathesis Universalis. Écrits sur la mathématique universelle. Textes introduits, traduits et annotés sous la direction de David Rabouin. Paris: Vrin.

    Google Scholar 

  • Levey, S. 1998. Leibniz on mathematics and the actually infinite division of matter. The Philosophical Review 107(1): 49–96.

    Article  Google Scholar 

  • Levey, S. 2008. Archimedes, infinitesimals and the law of continuity: On Leibniz’s fictionalism. In Infinitesimal differences: Controversies between Leibniz and his contemporaries, ed. D. Jesseph and U. Goldenbaum, 107–133. Berlin: Walter de Gruyter.

    Chapter  Google Scholar 

  • Lison, E. 2006. The philosophical assumptions underlying Leibniz’s use of the diagonal paradox in 1672. StudiaLeibnitiana 38(2): 197–208.

    Google Scholar 

  • Lison, E. 2020. What does God know but can’t say? Leibniz on infinity, fictitious infinitesimals and a possible solution of the labyrinth of freedom. Philosophia 48: 261–288.

    Article  Google Scholar 

  • Luna Alcoba, M. 1996. La ley de continuidad en G W. Leibniz. Sevilla: Universidad de Sevilla.

    MATH  Google Scholar 

  • Mancosu, P. 1996. Philosophy of mathematics and mathematical practice in the seventeenth century. New York: Oxford University Press.

    MATH  Google Scholar 

  • Nicolás, J.A. 1993. Razón, verdad y libertad en Leibniz. Granada: Universidad de Granada.

    Google Scholar 

  • Poser, H. 1979. Signum, Notio und Idea. Elemente der Leibnizschen Zeichentheorie. Semiotik 1: 309–324.

    Google Scholar 

  • Poser, H. 2016. Leibniz’ Philosophie. Über die Einheit von Metaphysik und Wissenschaft (herausgegeben von Wenchao Li). Hamburg: Felix Meiner.

    Google Scholar 

  • Rabouin, D. 2015. Leibniz’s rigorous foundations of the method of indivisibles. In Seventeenth-century indivisibles revisited, ed. V. Jullien, 347–364. Cham: Birkhäuser.

    Chapter  MATH  Google Scholar 

  • Rabouin, D., and R.T.W. Arthur. 2020. Leibniz’s syncategorematic infinitesimals II: Their existence, their use and their role in the justification of the differential calculus. Archive for History of Exact Sciences 75: 401–443.

    Article  MathSciNet  MATH  Google Scholar 

  • Raffo Quintana, F. 2018. Leibniz on the requisites of an exact arithmetical quadrature. Studies in History and Philosophy of Science 67: 65–73.

    Article  Google Scholar 

  • Raffo Quintana, F. 2019. Continuo e infinito en el pensamiento leibniziano de juventud. Comares: Granada.

    Google Scholar 

  • Raffo Quintana, F. 2020. Sobre compendios y ficciones en el pensamiento juvenil de Leibniz. Revista Latinoamericana de Filosofía 46: 131–150.

    Article  Google Scholar 

  • Rescher, N. 1981. Leibniz and the plurality of space-time frameworks. In Leibniz’s metaphsycs of nature, ed. N. Rescher, 84–100. Dordrecht: Reidel Publishing Company.

    Chapter  Google Scholar 

  • Sherry, D., and M. Katz. 2012. Infinitesimals, imaginaries, ideals, and fictions. Studia Leibnitiana 44: 166–192.

    Article  Google Scholar 

  • Sonar, T. 2016. Die Geschichte des Prioritätsstreitszwischen Leibniz und Newton. Geschichte-Kulturen-Menschen. Berlin: Springer.

    MATH  Google Scholar 

  • Swoyer, C. 1991. Structural representation and surrogative reasoning. Synthese 87: 449–508.

    Article  MathSciNet  Google Scholar 

  • Swoyer, C. 1995. Leibnizian expression. Journal of the History of Philosophy 33(1): 65–99.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our thanks to the anonymous referees of Archive for History of Exact Sciences for their observations and suggestions, which have contributed to considerably improve this paper.

Funding

This paper is supported by the projects “La Ciencia General de Leibniz como fundamentación de las ciencias: lógica, ontología y filosofía natural” (ANPCyT, Argentina, PICT-2017-0506) and “Resultados de imposibilidad en geometría: perspectivas históricas y semánticas” (ANPCyT, Argentina, PICT-2017-0443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Raffo Quintana.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Communicated by Jeremy Gray.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esquisabel, O.M., Raffo Quintana, F. Fiction, possibility and impossibility: three kinds of mathematical fictions in Leibniz’s work. Arch. Hist. Exact Sci. 75, 613–647 (2021). https://doi.org/10.1007/s00407-021-00277-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-021-00277-0

Navigation