Skip to main content
Log in

Machine learning in human creativity: status and perspectives

  • Open Forum
  • Published:
AI & SOCIETY Aims and scope Submit manuscript

Abstract

As we write this research paper, we notice an explosion in popularity of machine learning in numerous fields (ranging from governance, education, and management to criminal justice, fraud detection, and internet of things). In this contribution, rather than focusing on any of those fields, which have been well-reviewed already, we decided to concentrate on a series of more recent applications of deep learning models and technologies that have only recently gained significant track in the relevant literature. These applications are concerned with artistic production (Sect. 2.1), the writing process (Sect. 2.2), music production (Sect. 2.3), text recognition and attribution (Sect.  2.4). After reviewing and analyzing the positive contributions as well as some of the major limitations of these technologies in each of those fields, we critically reflect (Sect.  3) on how their widespread implementation may affect humans and their creativity. In Sect. 4, we notice that deep learning models are here to stay; so, rather than embracing a negative or pessimistic stance with respect to their future applications in creative domains, we suggest a balanced approach for their assessment and beneficial usage. Finally (Sect. 5), we conclude by summarising what we have achieved and by pointing out possible future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Not applicable.

Notes

  1. https://www.oecd.org/publications/artificial-intelligence-in-society-eedfee77-en.htm Last Accessed December 2023.

  2. https://www.nytimes.com/2018/10/25/arts/design/ai-art-sold-christies.html Last accessed December 2023.

  3. https://arstechnica.com/information-technology/2022/08/ai-wins-state-fair-art-contest-annoys-humans/

    Last accessed December 2023.

  4. https://www.midjourney.com/home/ Last accessed December 2023.

  5. https://quasimondo.com/ Last accessed December 2023.

  6. https://openai.com/dall-e-2/ Last accessed December 2023.

  7. https://www.jasper.ai/demo?fpr=socialtipster Last accessed December 2023.

  8. https://openai.com/api/ Last accessed December 2023.

  9. https://thealgorithmicbridge.substack.com/p/gpt-4-rumors-from-silicon-valley Last accessed December 2023.

  10. https://schwitzsplinters.blogspot.com/2022/07/results-computerized-philosopher-can.html Last accessed December 2023.

  11. https://www.nytimes.com/2022/04/15/magazine/ai-language.html Last accessed December 2023.

  12. https://blog.bpmmusic.io/news/the-future-of-ai-and-music-production/ Last accessed December 2023.

  13. https://www.ampermusic.com/ Last accessed December 2023.

  14. https://www.aiva.ai/ Last accessed December 2023.

  15. A sample of music composed through these apps can be accessed at: https://www.youtube.com/watch?time_continue=4&v=egJ0PTKQp4U&feature=emb_title&ab_channel=NVIDIA

    Last accessed December 2023.

  16. https://mubert.com/ Last accessed December 2023.

  17. https://ai.googleblog.com/2022/10/audiolm-language-modeling-approach-to.html Last accessed December 2023.

  18. https://amadeuscode.com/app/en Last accessed December 2023.

  19. https://magenta.tensorflow.org/ Last accessed December 2023.

  20. https://www.izotope.com/ Last accessed December 2023.

  21. https://djmag.com/longreads/ai-futures-how-artificial-intelligence-will-shape-music-production Last accessed December 2023.

  22. …or for writers. However, this latter case is far more controversial and since sufficient evidence has not been gathered so far, we prefer not to analyze its ethical ramifications and potential impact on creativity (in detail) in this context.

  23. https://www.ai-darobot.com/ Last accessed December 2023.

References

  • Alley C et al (2020) A machine learning toolkit for genetic engineering attribution to facilitate biosecurity. Nat Commun 11(1):1–12

    Article  Google Scholar 

  • Assael, Y., Sommerschield, T., Shillingford, B., Bordbar, M., Pavlopoulos, J., Chatzipanagiotou, M., ... & de Freitas, N. (2022). Restoring and attributing ancient texts using deep neural networks. Nature603(7900), 280–283.

  • Bender EM, Koller A (2020) Climbing towards NLU: on meaning, form, and understanding in the age of data. In: Proceedings of the 58th annual meeting of the association for computational linguistics, pp 5185–5198

  • Boden MA (1995) Modelling creativity: reply to reviewers. Artif Intell 79(1):161–182

    Article  Google Scholar 

  • Boden MA (1998) Creativity and artificial intelligence. Artif Intell 103(1–2):347–356

    Article  MathSciNet  Google Scholar 

  • Boden MA (2004) The creative mind: myths and mechanisms. Routledge, London

    Book  Google Scholar 

  • Bowen GM, Roth WM (2002) Why students may not learn to interpret scientific inscriptions. Res Sci Educ 32(3):303–327

    Article  Google Scholar 

  • Bugayenko Y, Bakare A, Cheverda A, Farina M, Kruglov A, Plaksin Y, Pedrycz W, Succi G (2023) Prioritizing tasks in software development: a systematic literature review. Plos One 18(4):e0283838

    Article  Google Scholar 

  • Chamorro-Premuzic T, Akhtar R, Winsborough D, Sherman RA (2017) The datafication of talent: how technology is advancing the science of human potential at work. Curr Opin Behav Sci 18:13–16

    Article  Google Scholar 

  • Chandana HC (2022) A deep learning model to identify twins and look alike identification using convolutional neural network (CNN) and to compare the accuracy with SVM approach. ECS Trans 107(1):14109–14121

    Article  Google Scholar 

  • Changqin H, Ming Li, Wang D (2021) Stochastic configuration network ensembles with selective base models. Neural Netw 137:106–118

    Article  Google Scholar 

  • Cheng M (2022) The creativity of artificial intelligence in art. Proceedings 81(1):110

    Google Scholar 

  • Chollet F (2019) On the measure of intelligence. arXiv preprint arXiv:1911.01547

  • Ciancarini P, Farina M, Masyagin S, Succi G, Yermolaieva S, Zagvozkina N (2021) Root causes of interaction issues in agile software development teams: status and perspectives. In: Advances in information and communication: proceedings of the 2021 future of information and communication conference (FICC), vol 2. Springer International Publishing, pp 1017–1036

  • Ciancarini P, Farina M, Okonicha O, Smirnova M, Succi G (2023) Software as storytelling: a systematic literature review. Comput Sci Rev 47:100517

    Article  MathSciNet  Google Scholar 

  • Comrie AE, Frank LM, Kay K (2022) Imagination as a fundamental function of the hippocampus. Philos Trans R Soc B 377(1866):20210336

    Article  Google Scholar 

  • Cope D (2005) Computer models of musical creativity. MIT Press, Cambridge

    Google Scholar 

  • Coyle D, Weller A (2020) “Explaining” machine learning reveals policy challenges. Science 368(6498):1433–1434

    Article  Google Scholar 

  • Csikszentmihalyi M (1990) Creativity: the psychology of discovery and invention. Harper Perennial, New York

    Google Scholar 

  • Csikszentmihalyi M (1996) Creativity: flow and the psychology of discovery and invention. Harper Perennial, New York

    Google Scholar 

  • Cui L, Yang S, Chen F, Ming Z, Lu N, Qin J (2018) A survey on application of machine learning for internet of things. Int J Mach Learn Cybern 9(8):1399–1417

    Article  Google Scholar 

  • Dai W, Ji L, Wang D (2022) Federated stochastic configuration networks for distributed data analytics. Inf Sci 614:51–70

    Article  Google Scholar 

  • Dannenberg RB (2006) Computer models of musical creativity. Artif Intell 170(18):1218–1221

    Article  Google Scholar 

  • Dietterich TG (1990) Machine learning. Ann Rev Comput Sci 4(1):255–306

    Article  Google Scholar 

  • Farina M, Lavazza A (2021) The meaning of freedom after covid-19’. Hist Philos Life Sci 43:3. https://doi.org/10.1007/s40656-020-00354-7

    Article  Google Scholar 

  • Farina M, Lavazza A (2022a) Mind embedded or extended: transhumanist and posthumanist reflections in support of the extended mind thesis. Synthese 200:507. https://doi.org/10.1007/s11229-022-03963-w

    Article  Google Scholar 

  • Farina M, Lavazza A (2022b) Incorporation, transparency, and cognitive extension: why the distinction between embedded or extended might be more important to ethics than to metaphysics. Philos Technol 35 (1):1–21. https://doi.org/10.1007/s13347-022-00508-4

    Article  Google Scholar 

  • Farina M, Lavazza A (2022c) Why there are still moral reasons to prefer extended over embedded: a (short) reply to Cassinadri. Philos Technol 35(3):1–7. https://doi.org/10.1007/s13347-022-00566-8

    Article  Google Scholar 

  • Farina M, Lavazza A (2023) ChatGPT in society: emerging issues. Front Artif Intell 6:1130913. https://doi.org/10.3389/frai.2023.1130913

    Article  Google Scholar 

  • Farina M, Levin S (2021) The extended mind thesis: domains and application. In: Michael R, Thomas L (eds) Embodied psychology: thinking, feeling, and acting. Springer, pp 127–147. https://doi.org/10.1007/978-3-030-78471-3_6

  • Farina M, Gorb A, Kruglov A, Succi G (2022a) Technologies for GQM-based metrics recommender systems: a systematic literature review. IEEE Access 10:23098–23111

    Article  Google Scholar 

  • Farina M, Karimov A, Zhdanov P, Lavazza A (2022b) AI and society: a virtue ethics approach. AI Soc. https://doi.org/10.1007/s00146-022-01545-5

    Article  Google Scholar 

  • Farina M, Yu X, Lavazza A (2024) Ethical considerations and policy interventions concerning the impact of generative AI tools in the economy and in society. AI Ethics. https://doi.org/10.1007/s43681-023-00405-2

  • Felicetti M J, Wang D (2023) Stochastic configuration machines: FPGA implementation. arXiv preprint arXiv:2310.19225

  • Felicetti MJ, Wang D (2022) Deep stochastic configuration networks with optimised model and hyper-parameters. Inf Sci 600:431–441

    Article  Google Scholar 

  • Flach P (2012) Machine learning: the art and science of algorithms that make sense of data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Glaveanu VP, Kaufman JC (2019) A historical perspective. In: Kaufman J, Kaufman J (eds) The Cambridge handbook of creativity, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316979839

    Chapter  Google Scholar 

  • Goodfellow I, Bengio Y, Courville A (2017) Deep learning. MIT Press, Cambridge

    Google Scholar 

  • Goold P (2020) Artificial authors: case studies of copyright in works of machine learning. J Copyright Soc USA 67(1):427–470

    Google Scholar 

  • Hautala J, Jauhiainen JS (2019) Creativity-related mobilities of peripheral artists and scientists. GeoJournal 84(2):381–394. https://doi.org/10.1007/s10708-018-9866-3

    Article  Google Scholar 

  • Hertzmann A (2019). Aesthetics of neural network art. arXiv preprint arXiv:1903.05696

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Article  Google Scholar 

  • Hu M (2017) Biometric surveillance and big data governance. In: Gray D, Henderson S (eds) The Cambridge handbook of surveillance law. Cambridge University Press, Cambridge, pp 121–149

    Chapter  Google Scholar 

  • Hutson M (2022) Could AI help you to write your next paper? Nature 611(7934):192–193

    Article  Google Scholar 

  • Jarke J, Breiter A (2019) Editorial: The datafication of education. Learn Media Technol 44(1):1–6. https://doi.org/10.1080/17439884.2019.1573833

    Article  Google Scholar 

  • Kalyan A, Kumar A, Chandrasekaran A, Sabharwal A, Clark P (2021) How much coffee was consumed during EMNLP 2019? fermi problems: a new reasoning challenge for AI. arXiv preprint arXiv:2110.14207

  • Kearns M, Roth A (2019) The ethical algorithm: the science of socially aware algorithm design. Oxford University Press, Oxford

    Google Scholar 

  • Kelleher JD, Tierney B (2018) Data science. MIT Press, Cambridge

    Book  Google Scholar 

  • Kepner J, Jananthan H (2018) Mathematics of big data: spreadsheets, databases, matrices, and graphs. MIT Press, Cambridge

    Book  Google Scholar 

  • Koestler A (1964) The act of creation. Hutchinson & Co. (Publishers) Ltd, London

    Google Scholar 

  • Lavazza A, Farina M (2023a) Leveraging autonomous weapon systems: realism and humanitarianism in modern warfare. Technol Soc. https://doi.org/10.1016/j.techsoc.2023.102322

    Article  Google Scholar 

  • Lavazza A, Farina M (2023b) Infosphere, datafication, and decision-making processes in the AI era. Topoi 42:843–856. https://doi.org/10.1007/s11245-023-09919-0

    Article  Google Scholar 

  • LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  Google Scholar 

  • Lenat DB (1977) The ubiquity of discovery. Artif Intell 9(3):257–285

    Article  Google Scholar 

  • Li M, Wang D (2017) (2017) Insights into randomized algorithms for neural networks: practical issues and common pitfalls. Inf Sci 382–383:170–178

    Article  Google Scholar 

  • Li M, Wang D (2021) 2-D stochastic configuration networks for image data analytics. IEEE Trans Cybern 51(1):359–372

    Article  Google Scholar 

  • Liddel P (2017) Greek Inscriptions: insights and resources in the classroom and beyond. J Class Teach 18(35):43–47

    Article  Google Scholar 

  • Malik AK, Gao R, Ganaie MA, Tanveer M, Suganthan PN (2023) Random vector functional link network: recent developments, applications, and future directions. Appl Soft Comput 110377. https://doi.org/10.48550/arXiv.2203.11316

  • Marcus G (2018) Deep learning: a critical appraisal. arXiv preprint arXiv:1801.00631

  • Martens D (2022) Data science ethics: concepts, techniques, and cautionary tales. Oxford University Press, Oxford

    Book  Google Scholar 

  • Miller AI (2019) The artist in the machine: the world of AI-powered creativity. MIT Press, Cambridge

    Book  Google Scholar 

  • Mjolsness E, DeCoste D (2001) Machine learning for science: state of the art and future prospects. Science 293(5537):2051–2055

    Article  Google Scholar 

  • Mökander J, Schuett J, Kirk HR, Floridi L (2023). Auditing large language models: a three-layered approach. arXiv preprint arXiv:2302.08500

  • Ni Z, Yang W, Wang S, Ma L, Kwong S (2020) Towards unsupervised deep image enhancement with generative adversarial network. IEEE Trans Image Process 29:9140–9151

    Article  Google Scholar 

  • Paiement JF, Bengio S, Eck D (2009) Probabilistic models for melodic prediction. Artif Intell 173(14):1266–1274

    Article  MathSciNet  Google Scholar 

  • Pybus J, Coté M (2021) Did you give permission? Datafication in the mobile ecosystem. Inf Commun Soc 25:1–19

    Google Scholar 

  • Rumelhart DE, McClelland JL, PDP Research Group (1987) Parallel distributed processing, vol 1. MIT Press, Cambridge

    Google Scholar 

  • Runco MA (1994) Problem finding, problem solving, and creativity. Greenwood Publishing Group, Norwood

    Google Scholar 

  • Runco MA, Acar S (2012) Divergent thinking as an indicator of creative potential. Creat Res J 24(1):66–75. https://doi.org/10.1080/10400419.2012.652929

    Article  Google Scholar 

  • Runco MA, Jaeger GJ (2012) The standard definition of creativity. Creat Res J 24(1):92–96. https://doi.org/10.1080/10400419.2012.650092

    Article  Google Scholar 

  • Ryberg J, Roberts JV (2022) Sentencing and artificial intelligence. Oxford University Press, Oxford

    Book  Google Scholar 

  • Ryman-Tubb NF, Krause P, Garn W (2018) How Artificial Intelligence and machine learning research impacts payment card fraud detection: a survey and industry benchmark. Eng Appl Artif Intell 76:130–157

    Article  Google Scholar 

  • Samuel A (1959) Some studies in machine learning using the game of checkers. IBM J Res Dev 3(3):210–229

    Article  MathSciNet  Google Scholar 

  • Sanchez-Burks J, Karlesky MJ, Lee F (2015) Psychological bricolage: integrating social identities to produce creative solutions. In: Shalley CE, Hitt MA, Zhou J (eds) The Oxford handbook of creativity, innovation and entrepreneurship. Oxford University Press, New York City, pp 93–102

    Google Scholar 

  • Sawyer RK (2014) Explaining creativity: the science of human innovation. Oxford University Press, New York City

    Google Scholar 

  • Scardapane S, Wang W (2017) Randomness in neural networks: an overview. Wires Data Min Knowl Discov. https://doi.org/10.1002/widm.1200

    Article  Google Scholar 

  • Schwenker F, Kestler HA, Palm G (2001) Three learning phases for radial-basis-function networks. Neural Netw 14(4–5):439–458

    Article  Google Scholar 

  • Smits J, Borghuis T (2022) Generative AI and intellectual property rights. Law Artif Intell 35:323–344

    Article  Google Scholar 

  • Sternberg RJ, Lubart TI (1999) Handbook of creativity. Cambridge University Press, Cambridge

    Google Scholar 

  • Towell GG, Shavlik JW (1994) Knowledge-based artificial neural networks. Artif Intell 70(1–2):119–165

    Article  Google Scholar 

  • Valmeekam K, Olmo A, Sreedharan S, Kambhampati S (2022) Large language models still can’t plan (a benchmark for LLMS on planning and reasoning about change). arXiv preprint arXiv:2206.10498

  • Van Liebergen B (2017) Machine learning: a revolution in risk management and compliance? J Financ Transform 45:60–67

    Google Scholar 

  • Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN et al (2017) Attention is all you need. Adv Neural Inf Process Syst 30. https://doi.org/10.48550/arXiv.1706.03762

  • Wang K, Wan X (2019) Automatic generation of sentimental texts via mixture adversarial networks. Artif Intell 275:540–558

    Article  Google Scholar 

  • Wang L, Chen W, Yang W, Bi F, Yu FR (2020) A state-of-the-art review on image synthesis with generative adversarial networks. IEEE Access 8:63514–63537

    Article  Google Scholar 

  • Wang D, Felicetti MJ (2023) Stochastic configuration machines for industrial artificial I intelligence. arXiv preprint arXiv:2308.13570

  • West P, Bhagavatula C, Hessel J, Hwang JD, Jiang L, Bras RL et al (2021) Symbolic knowledge distillation: from general language models to commonsense models. arXiv preprint arXiv:2110.07178

  • Williams S (2020) Data action: using data for public good. MIT Press, Cambridge

    Book  Google Scholar 

  • Wingström R, Hautala J, Lundman R (2022) Redefining creativity in the Era of AI? Perspectives of computer scientists and new media artists. Creativ Res J. https://doi.org/10.1080/10400419.2022.2107850

    Article  Google Scholar 

  • Wooldridge M (2020) Artificial Intelligence requires more than deep learning-but what, exactly? Artif Intell 289:103386

    Article  Google Scholar 

  • Wu J, Liu X, Hu X, Zhu J (2020) PopMNet: generating structured pop music melodies using neural networks. Artif Intell 286:103303

    Article  Google Scholar 

  • Xingche Hu, Pedrycz W, Wang D (2019) Fuzzy rule-based models with randomized development mechanisms. Fuzzy Sets Syst 361:71–87

    Article  MathSciNet  Google Scholar 

  • Yeung K (2020) Recommendation of the council on artificial intelligence (OECD). Int Leg Mater 59(1):27–34

    Article  Google Scholar 

  • Yu H, Xie T, Paszczynski S, Wilamowski BM (2011) Advantages of radial basis function networks for dynamic system design. IEEE Trans Ind Electron 58(12):5438–5450

    Article  Google Scholar 

  • Zong W, Huang GB (2011) Face recognition based on extreme learning machine. Neurocomputing 74(16):2541–2551

    Article  Google Scholar 

  • Zylinska J (2020) AI art. Open Humanities Press, London

    Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirko Farina.

Ethics declarations

Conflict of interest

None.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farina, M., Lavazza, A., Sartori, G. et al. Machine learning in human creativity: status and perspectives. AI & Soc (2024). https://doi.org/10.1007/s00146-023-01836-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00146-023-01836-5

Keywords

Navigation