Skip to main content

On J. Czelakowski’s Contributions to Quantum Logic and the Foundation of Quantum Mechanics

  • Chapter
  • First Online:
Janusz Czelakowski on Logical Consequence

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 27))

  • 31 Accesses

Abstract

This paper provides an overview of Janusz Czelakowski’s contributions to the theory of partial Boolean (\(\sigma \)-)algebras, and, more in general, to the foundation of Quantum Mechanics. Particular attention is paid to the logic of partial Boolean \(\sigma \)-algebras, to characterizations of PBAs embeddable into Boolean (\(\sigma \)-)algebras, and their representation as self-adjoint idempotent elements of partial commutative algebras with involution. Also, applications to the theory of orthomodular posets as well as Czelakowski’s theory of partial Boolean algebras in a broader sense will be discussed. Finally, further representation theorems and their importance for quantum logic will be outlined.

Second reader: Sonja Smets

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See e.g. Beran (1984), Kalmbach (1983).

  2. 2.

    See e.g. Hooker (1975) for extensive discussions on these topics.

  3. 3.

    Cf. e.g. D.J. Foulis’ work (Foulis, 1960) on orthomodular lattices.

  4. 4.

    Here \(\varphi \leftrightarrow \psi \) is short for \((\varphi \rightarrow \psi )\wedge (\psi \rightarrow \varphi )\), where \(\varphi \rightarrow \psi :=\lnot \varphi \vee \psi \).

  5. 5.

    Here \(h(\Gamma )=1\) means \(h(\gamma )=1\), for any \(\gamma \in \Gamma \).

  6. 6.

    Note that there is a one to one correspondence between closed subspaces and projection operators (see e.g. Beran 1984, Theorem 4.1).

  7. 7.

    See also Czelakowski (1973b).

  8. 8.

    See e.g. Dichtl (1984), Navara (1999) for a rigorous treatment of this notion.

  9. 9.

    Here \(\textrm{C}_{ n}( {a_{1},\dots ,a_{n}})\) stands for \(({a_{1},\dots ,a_{n}})\in \textrm{C}_{n}\).

References

  • Abramsky, S. (2018). Contextuality: At the borders of Paradox. In E. Landry (Ed.), Categories for the working Philosopher. Oxford Academic.

    Google Scholar 

  • Albertson, J. (1961). Von Neumann’s Hidden-parameter proof. American Journal of Physics, 29(478), 478–484.

    Article  Google Scholar 

  • Amemiya, I., & Araki, H. (1966). A remark on Piron’s paper. Publications of the Research Institute for Mathematical Sciences, 2(3), 423–427.

    Article  Google Scholar 

  • Belinfante, F.J. (1973). A survey of hidden-variables theories. Pergamon Press.

    Google Scholar 

  • Beran, L. (1984). Orthomodular Lattices: Algebraic approach. D. Reidel Publishing Company.

    Google Scholar 

  • Birkhoff, G., & von Neumann, J. (1936). The logic of quantum mechanics. Annals of MAthematics, 37(4).

    Google Scholar 

  • Burris, S., & Sankappanavar, H. P. (2012). A course in Universal Algebra.

    Google Scholar 

  • Czelakowski, J. (1973). Some remarks on transitive partial Boolean algebras. Bulletin of the Section of Logic, 2(3), 166–174.

    Google Scholar 

  • Czelakowski, J. (1973). Another approach to partial Boolean algebras. Bulletin of the Section of Logic, 2(3), 175–177.

    Google Scholar 

  • Czelakowski, J. (1973). A local property of imbeddings for partial Boolean algebras. Bulletin of the Section of Logic, 2(3), 182–183.

    Google Scholar 

  • Czelakowski, J. (1973). On imbedding of partial Boolean algebras into Boolean algebras. Bulletin of the Section of Logic, 2(3), 178–180.

    Google Scholar 

  • Czelakowski, J. (1974a). Correction to my note “Partial Boolean \(\sigma \)-algebras”. Bulletin of the Section of Logic, 3(4), 37–38.

    Google Scholar 

  • Czelakowski, J. (1974b). Partial Boolean \(\sigma \)- algebras. Bulletin of the Section of Logic, 3(1), 45–50.

    Google Scholar 

  • Czelakowski, J. (1974c). Logics based on partial Boolean \(\sigma \)- algebras. Bulletin of the Section of Logic, 3(2), 31–37.

    Google Scholar 

  • Czelakowski, J. (1974d). The identity relation and partial Boolean algebras. Bulletin of the Section of Logic, 3(4), 34–36.

    Google Scholar 

  • Czelakowski, J. (1975a). Logics based on Partial Boolean \(\sigma \)-Algebras (1). Studia Logica, 33(4), 371–396.

    Google Scholar 

  • Czelakowski, J. (1975b). Logics based on Partial Boolean \(\sigma \)-Algebras (2). Studia Logica, 34(1), 69–86.

    Google Scholar 

  • Czelakowski, J. (1978). On extending of partial Boolean algebras to partial \(\ast \)-algebras. Colloquium Mathematicum, 60(1), 13–21.

    Article  Google Scholar 

  • Czelakowski, J. (1979a). On \(\sigma \)-orthodistributivity. Colloquium Mathematicum, 41(1), 13–24.

    Google Scholar 

  • Czelakowski, J. (1979b). Partial Boolean Algebras in a Broader Sense. Studia Logica, 38(1), 1–16.

    Google Scholar 

  • Czelakowski, J. (1981a). Partial Boolean algebras in a broader sense and Boolean embeddings. Colloquium Mathematicum, 45(2), 171–180.

    Google Scholar 

  • Czelakowski, J. (1981b). Partial Boolean algebras in a broader sense as a semantics for quantum logic. Reports on Mathematical Logic, 11, 49–56.

    Google Scholar 

  • Czelakowski, J. (1981c). Partial referential matrices. In E. Beltrametti, & B. C. Van Fraassen (Eds.), Current issues in quantum logic. Ettore Majorana International Science Series (pp. 131–146).

    Google Scholar 

  • Dalla Chiara, M., Giuntini, R., & Greechie, R. (2004). Reasoning in quantum theory: Sharp and Unsharp Quantum Logics. Trends in Logic (Vol. 22).

    Google Scholar 

  • Day, G. W. (1965). Free complete extensions of Boolean algebras. Pacific Journal of Mathematics, 15(4), 1145–1151.

    Article  Google Scholar 

  • Dichtl, M. (1984). Astroids and pastings. Algebra Universalis, 18, 380–385.

    Article  Google Scholar 

  • Dwinger, P. (1967). Direct limits of partially ordered system of Boolean algebras. Indagationes Mathematicae, 29, 317–325.

    Article  Google Scholar 

  • Font, J. M. (2016). Abstract algebraic logic: An introductory textbook. College Publications.

    Google Scholar 

  • Foulis, D. J. (1960). Baer \(\ast \)-Semigroups. Proceedings of the American Mathematical Society, 11(4), 648–654.

    Google Scholar 

  • Freistadt, H. (1957). The causal formulation of Quantum Mechanics of particles (the Theory of De Broglie, Bohm and Takabayasi). Nuovo Cimento, 5(Suppl 1), 1.

    Google Scholar 

  • Giuntini, R. (1987). Quantum logics and Lindenbaum property. Studia Logica, 46, 17–35.

    Article  Google Scholar 

  • Giuntini, R. (1988). Quantum logics and the hidden-variable issue. In P. Weingartner, G. Schurz & Hölder-Pichler-Tempsky (Eds.), Proceedings of the 13th Wittgenstein Symposium (pp. 128–136). Wien.

    Google Scholar 

  • Giuntini, R. (1989). Quantum logics and relative Lindenbaum property. Annalen der Physik, 46, 293–302.

    Article  Google Scholar 

  • Giuntini, R. (1991). Quantum logic and hidden variables. Bibliographisches Institut.

    Google Scholar 

  • Greechie, R. J. (1969). A particular non-atomistic orthomodular poset. Communications in Mathematical Physics, 14, 326–328.

    Article  Google Scholar 

  • Halmos, P., & Givant, S. (2009). Introduction to Boolean algebras. Springer.

    Google Scholar 

  • Hooker, C. A. (Ed.). (1975). The logico-algebraic approach to quantum mechanics (Vol. 1–2). The Western Ontario Series in Philosophy of Science (WONS) v. 5a.

    Google Scholar 

  • Jauch, J. M., & Piron, C. (1963). Can hidden variables be excluded in quantum mechanics? Helvetica Physica Acta, 36, 827–837.

    Google Scholar 

  • Kalmbach, G. (1983). Orthomodular lattices. Academic Press.

    Google Scholar 

  • Kochen, S., & Specker, E. P. (1967). The problem of hidden variables in Quantum Mechanics. Journal of Mathematics and Mechanics, 17(1), 59–87.

    Google Scholar 

  • Kochen, S., & Specker, E. P. (2014). Logical structures arising in quantum theory. In J. W. Addison, L. Henkin, & A. Tarski (Eds.), The theory of models, in studies in logic and the foundations of mathematics (pp. 177–189). North-Holland.

    Google Scholar 

  • Mackey, G. (1957). The mathematical foundations of Quantum Mechanics. Benjamin.

    Google Scholar 

  • Mączyński, M. J. (1967). A remark on Mackey’s axiom system for quantum mechanics. Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Mathematiques, Astronomiques et Physiques (Vol. 15, no. 8).

    Google Scholar 

  • Mączyński, M. J. (1975). \(\sigma \)-orthodistributivity in \(\sigma \)-orthocomplemented partially ordered sets, Bulletin de l’Academie Polonaise des Sciences. Serie des Sciences Mathematiques, Astronomiques et Physiques (Vol. 23, pp. 231–236).

    Google Scholar 

  • Mittelstaedt, P. (1981). Classification of different areas of work afferent to quantum logic. In E. Beltrametti, & B. C. Van Fraassen (Eds.), Current issues in quantum logic. Ettore Majorana International Science Series (pp. 3–16).

    Google Scholar 

  • Navara, M. (1999). Two descriptions of State Spaces of Orthomodular Structures. International Journal of Theoretical Physics, 38(12), 3163–3178.

    Article  Google Scholar 

  • Pais, A. (1982). Max Born’s statistical interpretation of Quantum Mechanics. Science, 218, 1193–1198.

    Article  Google Scholar 

  • Pool, J. C. T. (1963). Simultaneous observability and the logic of quantum mechanics, Ph.D. Thesis, State University of Iowa, 1963.

    Google Scholar 

  • Ramsay, A. (1966). A theorem on two commuting observables. Journal of Mathematics and Mechanics, 15, 227–234.

    Google Scholar 

  • Sikorski, R. (1960). Boolean algebras. Springer.

    Google Scholar 

  • von Neumann, J. (1955). The mathematical foundations of Quantum Mechanics. Princeton University Press.

    Google Scholar 

Download references

Acknowledgements

This work has been partly produced during a research stay at the Nicolaus Copernicus University of Toruń (PL) under the Excellence-Initiative Research Programme. The author thanks R. Gruszczyński, T. Jarmużek, M. Klonowski, and all the members of the Department of Logic for the valuable support received. Finally, the author expresses his gratitude to R. Giuntini, A. Ledda, and F. Paoli, for the insightful and exciting discussions we had over the last years on topics of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Fazio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fazio, D. (2024). On J. Czelakowski’s Contributions to Quantum Logic and the Foundation of Quantum Mechanics. In: Malinowski, J., Palczewski, R. (eds) Janusz Czelakowski on Logical Consequence. Outstanding Contributions to Logic, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-031-44490-6_7

Download citation

Publish with us

Policies and ethics