Skip to main content
Log in

On Interchangeability of Probe–Object Roles in Quantum–Quantum Interaction-Free Measurement

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we examine Interaction-free measurement where both the probe and the object are quantum particles. We argue that in this case the description of the measurement procedure must by symmetrical with respect to interchange of the roles of probe and object. A thought experiment is being suggested that helps to determine what does and what doesn’t happen to the state of the particles in such a setup. It seems that unlike the case of classical object, here the state of both the probe and the object must change. A possible explanation of this might be that the probe and the object form an entangled pair as a result of non-interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacobs, K.: Quantum Measurement Theory and Its Applications. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  2. Renninger, M.: Zum Wellen–Korpuskel–Dualismus. Z. Phys. 136, 251 (1953). https://doi.org/10.1007/BF01325679

    Article  ADS  MATH  Google Scholar 

  3. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found. Phys. 23, 987 (1993). https://doi.org/10.1007/BF00736012

    Article  ADS  Google Scholar 

  4. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A., Kasevich, M.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995). https://doi.org/10.1103/PhysRevLett.74.4763

    Article  ADS  Google Scholar 

  5. Kwiat, P., Weinfurter, H., Zeilinger, A.: Interaction-free measurement of a quantum object: on the breeding of “Schrodinger Cats”. In: Eberly, J.H., Mandel, L., Wolf, E. (eds.) Coherence and Quantum Optics VII, pp. 673–674. Plenum Press, New York (1996)

    Chapter  Google Scholar 

  6. Hardy, L.: Quantum mechanics, local realistic theories, and Lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992). https://doi.org/10.1103/PhysRevLett.68.2981

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Aharonov, Y., Botero, A., Popescu, S., Reznik, B., Tollaksen, J.: Revisiting Hardy’s paradox: counterfactual statements, real measurements, entanglement and weak values. Phys. Lett. A 301, 130–138 (2002). https://doi.org/10.1016/S0375-9601(02)00986-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Irvine, W., Hodelin, J., Simon, C., Bouwmeester, D.: Realization of Hardy’s thought experiment with photons. Phys. Rev. Lett. 95, 030401 (2005). https://doi.org/10.1103/PhysRevLett.95.030401

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Lundeen, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys. Rev. Lett. 102, 020404 (2009). https://doi.org/10.1103/PhysRevLett.102.020404

    Article  ADS  Google Scholar 

  10. Yokota, K., Yamamoto, T., Koashi, M., Imoto, N.: Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys 11, 033011 (2009). https://doi.org/10.1088/1367-2630/11/3/033011

    Article  ADS  Google Scholar 

  11. Azuma, H.: Interaction-free quantum computation. Phys. Rev. A 70, 012318 (2004). https://doi.org/10.1103/PhysRevA.70.012318

    Article  ADS  MathSciNet  Google Scholar 

  12. Huang, Y.P., Moore, M.G.: Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits. Phys. Rev. A 77, 062332 (2008). https://doi.org/10.1103/PhysRevA.77.062332

    Article  ADS  Google Scholar 

  13. Hosten, O., Rakher, M., Barreiro, J., Peters, N., Kwiat, P.: Counterfactual quantum computation through quantum interrogation. Nature 439, 949–952 (2006). https://doi.org/10.1038/nature04523

    Article  ADS  Google Scholar 

  14. Vaidman, L.: Impossibility of the counterfactual computation for all possible outcomes. Phys. Rev. Lett. 98, 160403 (2007). https://doi.org/10.1103/PhysRevLett.98.160403

    Article  ADS  Google Scholar 

  15. Kong, F., Ju, C., Huang, P., Wang, P., Kong, X., Shi, F., Jiang, L., Du, J.: Experimental realization of high-efficiency counterfactual computation. Phys. Rev. Lett. 115, 080501 (2015). https://doi.org/10.1103/PhysRevLett.115.080501

    Article  ADS  Google Scholar 

  16. Salih, H., Li, Z.-H., Al-Amri, M., Zubairy, S.: Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 110, 170502 (2013). https://doi.org/10.1103/PhysRevLett.110.170502

    Article  ADS  Google Scholar 

  17. Cao, Y., Li, Y.-H., Cao, Z., Yin, J., Chen, Y.-A., Ma, X., Peng, C.-Z., Pan, J.-W.: Lower bound on the speed of nonlocal correlations without locality and measurement choice loopholes. In: Conference on Lasers and Electro-Optics (CLEO) (2014)

  18. Noh, T.-G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103, 230501 (2009). https://doi.org/10.1103/PhysRevLett.103.230501

    Article  ADS  MathSciNet  Google Scholar 

  19. Aharonov, Y., Cohen, E., Elitzur, A.C., Smolin, L.: Interaction-free effects between distant atoms. Found. Phys. 48, 1–16 (2018). https://doi.org/10.1007/s10701-017-0127-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Potting, S., Lee, E.S., Schmitt, W., Rumyantsev, I., Mohring, B., Meystre, P.: Quantum coherence and interaction-free measurements. Phys. Rev. A 62, 060101(R) (2000). https://doi.org/10.1103/PhysRevA.62.060101

    Article  ADS  Google Scholar 

  21. Zhou, X., Zhou, Z., Guo, G., Feldman, M.: Quantum coherence and interaction-free measurements. Phys. Rev. A 64, 020101 (2001). https://doi.org/10.1103/PhysRevA.62.060101

    Article  ADS  Google Scholar 

  22. Angelo, R.: On the interpretative essence of the term “interaction-free measurement”: the role of entanglement. Found. Phys. 39, 109–119 (2009). https://doi.org/10.1007/s10701-008-9263-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Scully, M.O., Englert, B.-G., Walther, H.: Quantum optical tests of complementarity. Nature 351(6322), 111–116 (1991). https://doi.org/10.1038/351111a0

    Article  ADS  Google Scholar 

  24. Ryff, L.C., Souto Ribeiro, P.H.: Mach-Zehnder interferometer for a two-photon wave packet. Phys. Rev. A 63, 023801 (2001). https://doi.org/10.1103/PhysRevA.63.023801

    Article  ADS  Google Scholar 

  25. Braginsky, V.B., Vorontsov, Y.I., Thorn, K.S.: Quantum nondemolition measurements. Science 209, 547 (1980). https://doi.org/10.1126/science.209.4456.547

    Article  ADS  Google Scholar 

  26. Putz, M.V.: On Heisenberg uncertainty relationship, its extension, and the quantum issue of wave-particle duality. Int. J. Mol. Sci. 11(10), 4124–39 (2010). https://doi.org/10.3390/ijms11104124

    Article  Google Scholar 

  27. Putz, M.V.: The Bondons: the quantum particles of the chemical bond. Int. J. Mol. Sci. 11(11), 4227–4256 (2010). https://doi.org/10.3390/ijms11114227

    Article  Google Scholar 

  28. Vaidman, L.: The meaning of the interaction-free measurements. Found. Phys. 33, 491–510 (2003). https://doi.org/10.1023/A:1023767716236

    Article  MathSciNet  Google Scholar 

  29. von Neumann, J.: Mathematical Foundations of Quantum Mechanics, New, Translation ed. Princeton University Press, Princeton (2018)

  30. Blum, K.: Density Matrix Theory and Applications. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to the following people and organizations who made this work possible. Rin who provided inspiration for this work. Vyacheslavs Kashcheyevs for his comments, criticism and all the help. MIT OCW, Leonard Susskind for providing knowledge. Douglas Hofstadter and Mark Strand. Carl Vandivier, TMBCC and Morgan Book for great discussions and atmosphere in Bloomington. Arnis Ritups. The support of our families has been constant and invaluable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcis Auzinsh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A Formal Proof of Aligning Bloch Spheres Representing Interacting Particles

Appendix: A Formal Proof of Aligning Bloch Spheres Representing Interacting Particles

In words this proof shows that:

given two particles with two degrees of freedom each and those DoFs being coupled to each other

for every superposition of those DoFs in one particle there is a corresponding superposition in the DoFs of the other particle that will result in an event of absorbtion in 100% of the cases.

We start with postulating what we know.

\(\exists \) an atomic state \(\left| {?}\right\rangle _{at}\) s.t. given an idealized atom, it absorbs photon in state \(\left| {x}\right\rangle _{ph}\) in 100% of the cases. Let us call such a state \(\left| {x}\right\rangle _{at}\)

This state \(\left| {x}\right\rangle _{at}\) absorbs \(\left| {y}\right\rangle _{ph}\) in 0% of the cases. And \(\left\langle {x}\right| _{ph}\left| {y}\right\rangle _{ph}=0\)

Then

\(\exists \)\(U_{x\rightarrow y}^{at}\) s.t. \(U_{x\rightarrow y}^{at}\left| {x}\right\rangle _{at}\) absorbs \(\left| {y}\right\rangle _{ph}\) in 100% of the cases. Let’s call \(U_{x\rightarrow y}^{at}\left| {x}\right\rangle _{at} = \left| {y}\right\rangle _{at}\)

State \(\left| {x}\right\rangle _{at}\) absorbs \((\left| {x}\right\rangle _{ph}+i\left| {y}\right\rangle _{ph})/\sqrt{2} = \left| {\sigma {+}}\right\rangle _{ph}\) in 50% of cases.

\(\exists \)\(U_{x\rightarrow \sigma {+}}^{at}\) s.t. \((U_{x\rightarrow \sigma {+}}^{at})^2\left| {x}\right\rangle _{at} = U_{x\rightarrow y}^{at}\left| {x}\right\rangle _{at} = \left| {y}\right\rangle _{at}\) and \(U_{x\rightarrow \sigma {+}}^{at}\left| {x}\right\rangle _{at}\) absorbs \(\left| {\sigma {+}}\right\rangle _{ph}\) in 100% of the cases.

Same for the state \(\left| {\sigma {-}}\right\rangle _{at}\) that absorbs in 100% of the cases the state \(\left| {\sigma {-}}\right\rangle _{ph}\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filatov, S., Auzinsh, M. On Interchangeability of Probe–Object Roles in Quantum–Quantum Interaction-Free Measurement. Found Phys 49, 283–297 (2019). https://doi.org/10.1007/s10701-019-00244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-019-00244-4

Keywords

Navigation