Skip to main content
Log in

Complementarity Paradox Solved: Surprising Consequences

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Afshar et al. claim that their experiment shows a violation of the complementarity inequality. In this work, we study their claim using a modified Mach-Zehnder setup that represents a simpler version of the Afshar experiment. We find that our results are consistent with Afshar et al. experimental findings. However, we show that within standard quantum mechanics the results of the Afshar experiment do not lead to a violation of the complementarity inequality. We show that their claim originates from a particular technique they use to analyze their results. In their analysis, they assume a classical concept, that particles have a definite trajectory before detection, thus, they obtain which-way information by particle detection plus path extrapolation by applying momentum conservation. This analysis technique is standard in experimental particle physics. Important discoveries such as the detection of vector bosons have been made through the application of this technique. We note that particle detection plus path extrapolation is a suitable technique within de Broglie-Bohm theory of quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenberger, D., Yasin, A.: Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391 (1988)

    Article  ADS  Google Scholar 

  2. Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154 (1996)

    Article  ADS  Google Scholar 

  3. Afshar, S.S.: Sharp complementary wave and particle behaviours in the same Welcher weg experiment. Proc. SPIE 5866, 229–244 (2005)

    Article  ADS  Google Scholar 

  4. Afshar, S.S., Flores, E., McDonald, K.F., Knoesel, E.: Paradox in wave-particle duality for non-perturbative measurements. Found. Phys. 37, 295 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. Jacques, V., Lai, N.D., Dréau, A., Zheng, D., Chauvat, D., Treussart, F., Grangier, P., Roch, J.-F.: Illustration of quantum complementarity using single photons interfering on a grating. New J. Phys. 10, 123009 (2008)

    Article  ADS  Google Scholar 

  6. Steuernagel, O.: Afshar’s experiment does not show a violation of complementarity. Found. Phys. 37(37), 1370–1385 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Kastner, R.E.: Why the Afshar experiment does not refute complementarity. Stud. Hist. Philos. Mod. Phys. 36, 649–658 (2005)

    Article  Google Scholar 

  8. Kastner, R.E.: On visibility in the Afshar two-slit experiment. Found. Phys. 39, 1139 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Buonpastore, R., Knoesel, E., Flores, E.: Diffraction of coherent light with sinusoidal amplitude by a thin-slit grid. Opt. Int. J. Light Electron. Opt. (2009). doi:10.1016/j.ijleo.2008.12.004

    Google Scholar 

  10. Fernow, R.: Introduction to Experimental Particle Physics. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  11. Flores, E.: Reply to comments of Steuernagel on the Afshar’s experiment. Found. Phys. 38, 778–781 (2008)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Durr, D., Goldstein, S., Tumulka, R., Zangh, N.: Bohmian mechanics. In: Greenberger, D., Hentschel, K., Weinert, F. (eds.) Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy. Springer, Berlin (2009)

    Google Scholar 

  13. Flores, E., Knoesel, E.: Why Kastner analysis does not apply to a modified Afshar experiment. Proc. SPIE 6664, 66640O (2007)

    Article  Google Scholar 

  14. Flores, E.: Modified Afshar experiment: calculations. Proc. SPIE 7421, 74210W (2009) arXiv:0803.2192v2

    Article  Google Scholar 

  15. Hecht, E., Zajac, A.: Optics. Addison-Wesley, Reading (1974)

    Google Scholar 

  16. Wootters, W.K., Zurek, W.H.: Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr’s principle. Phys. Rev. D 19, 473 (1979)

    Article  ADS  Google Scholar 

  17. Kolar, M., Opatrny, T., Bar-Gill, N., Erez, N., Kurizki, G.: Path–phase duality with intraparticle translational–internal entanglement. New J. Phys. 9, 129 (2007)

    Article  ADS  Google Scholar 

  18. Wheeler, J.A.: Law Without Law, Quantum Theory and Measurement. Princeton University Press, Princeton (1983)

    Google Scholar 

  19. Jacques, V., Wu, E., Grosshans, F., Treussart, F., Grangier, P., Aspect, A., Roch, J.-F.: Delayed-choice test of quantum complementarity with interfering single photons. Phys. Rev. Lett. 100, 220402 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  20. Eisberg, R., Resnick, R.: Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles. Wiley, New York (1985)

    Google Scholar 

  21. Dürr, S., Rempe, G.: Can wave–particle duality be based on the uncertainty relation? Am. J. Phys. 68, 1021 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Flores.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flores, E.V., De Tata, J.M. Complementarity Paradox Solved: Surprising Consequences. Found Phys 40, 1731–1743 (2010). https://doi.org/10.1007/s10701-010-9477-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-010-9477-4

Keywords

Navigation