Skip to main content
Log in

Haunted by the Spectre of Virtual Particles: A Philosophical Reconsideration

  • Article
  • Published:
Journal for General Philosophy of Science Aims and scope Submit manuscript

Abstract

A virtual particle is an elementary particle in a quantum field theory that serves to symbolise the interaction of its counterparts, the so called real particles. In the last 20 years, philosophers of physics have put forth several arguments for and against an interpretation of virtual particles as being like ordinary objects in space and time. In this article, I will attempt to systematise the major arguments and argue that no pro-argument is ultimately satisfactory, and that only one contra-argument—that of superposition—is sufficient to deny the realistic interpretation of virtual particles. The secondary aim of this paper is to argue that even the philosophical considerations of virtual particles overestimate their role in that these entities are merely pictorial descriptions of a mathematical approximation method. This description, while helpful, is not necessary to understand particle interactions. In the end, quantum field theory is not the place to explain what actually happens in the very centre of an individual particle interaction.

Zusammenfassung

Unter virtuellen Teilchen versteht man Elementarteilchen einer Quantenfeldtheorie, die die Wechselwirkung ihrer Gegenstücke – den sogenannten reellen Teilchen – symbolisieren sollen. Wissenschaftstheoretiker haben in den vergangenen zwanzig Jahren viele Argumente für und gegen eine realistische Interpretation von virtuellen Teilchen zusammengetragen. Realistische Interpretation meint dabei, daß virtuelle Teilchen so existieren wie gewöhnliche Gegenstände in Raum und Zeit. Mein Anliegen in diesem Aufsatz ist es, die Hauptargumente dieser Debatte zu systematisieren und zu zeigen, daß keines der Argumente für die Existenz virtueller Teilchen überzeugt, und daß nur eines der Gegenargumente – das Superpositionsargument – ausreicht, um die die realistische Interpretation virtueller Teilchen zu widerlegen. Ein zweites Ziel dieses Aufsatzes ist es zu zeigen, daß die philosophischen Erwägungen die Rolle dieser Entitäten überschätzen, da sie eher einer bildhafte Beschreibungen einer mathematischen Näherungsmethode entnommen sind. Diese Beschreibung ist bei aller Anschaulichkeit nicht notwendig, um Teilchenwechselwirkungen zu berechnen und physikalisch zu verstehen. Am Ende sind Quantenfeldtheorien nicht der Ort, an dem aufgeklärt wird und werden kann, was tatsächlich bei einer einzelnen Teilchenwechselwirkung geschieht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. One exception may be Bjorken and Drell 1965, chapter 17 on perturbation theory. It leads us to Feynman diagrams, but without any mentioning and investigation of virtual particles.

  2. Frauenfelder and Henley 1975; Nachtmann 1990; Williams 1991; Povh et al. 1995.

  3. Bjorken and Drell 1965; Feynman and Hibbs 1965.

  4. Henley and Thirring 1962; Itzykson and Zuber 1980.

  5. The author is indebted to Henning Schröder (University of Rostock), Ewald Reya (University of Dortmund), and Gerhard Ecker (University of Vienna) for indispensable discussions as well as to Paul Tellers Interpretive Introduction to Quantum Field Theory (Princeton, 1995).

  6. Feynman (1948, 1949).

  7. The reader may forgive the author for not displaying in an example some steps from the Lagrangian to the perturbation expansions and then to correlating graphical elements of Feynman diagrams. This is done in Bjorken and Drell’s Relativistic Quantum Fields, pp. 74 ff. (New York, 1965). For the purpose of this paper it would be to much to explain why the intermediate steps are mathematically necessary, but philosophically negligible.

  8. Although I will return to virtual particles in the third section, with respect to the argument of this essay the above elementary description will suffice.

  9. Eidelman et al. 2004 (the main publication of the particle data group).

  10. See, e.g., Worrall (1994).

  11. On absorption and emission, e.g., Sakurai 1967, p. 256; on clouds, e.g., Henley and Thirring 1962, p. 122.

  12. Halzen and Martin 1984, p. 8.

  13. Nachtmann 1990, p. 99.

  14. Frauenfelder and Henley 1975, p. 16f.; Halzen and Martin 1984, p. 7; Nachtmann 1990, p. 99; Frauenfelder and Henley 1995, p. 106f.

  15. Frauenfelder and Henley 1975, p. 16f.

  16. Feynman and Henley 1965.

  17. Frauenfelder and Henley 1975; Halzen and Martin 1984.

  18. Redhead 1988, p. 9.

  19. Stöckler 1987, 1990; Weingard 1988; Teller 1995, esp. 139f.; Rohrlich 1999.

  20. Weingard 1988, 45f.

  21. Redhead 1988, p. 20.

  22. See the literature on the measurement of the anomalous magnetic moment given above.

  23. See the quotations above.

  24. Stöckler (1987, 1990).

  25. Stöckler (1990), 130 f., my translation.

  26. Cao (1997), p. 23 (footnote 10), p. 204.

  27. ibid., p. 204.

  28. Still it is worth being astonished about all that, but does not lead to any arguments against the reality of EPR-correlation, state-superpositions, and so on.

  29. Harré 1988, p. 68.

  30. ibid., p. 66.

  31. Weingard 1988, p. 45.

  32. Bunge (1970).

  33. ibid., p. 508.

  34. For the sloppy language, see a textbook on particle physics, e.g. Griffiths 1987, p. 51; Nachtmann 1990, p. 99. For an introduction to the critical discussion, see Nolting 1992, 201 f.

  35. Weingard 1982, 1988; Teller 1995.

  36. Weingard 1988, p. 44f.

  37. Teller 1995, p. 138.

  38. Röhl 2005, p. 474, my translation. The original statement contains a footnote about the source of the transfer theory of causality.

  39. Theoretical prediction: Casimir 1948; experimental confirmation: Sparnaay 1958.

  40. See Itzykson and Zuber 1980, pp. 138–142. Both the Casimir-effect and the Lamb-shift are given as examples without “particle interpretation” (p. 138).

References

  • Bjorken, J. D., & Drell S. D. (1965). Relativistic quantum fields. New York: McGraw-Hill.

    Google Scholar 

  • Bunge, M. (1970). Virtual processes and virtual particles: Real or fictious? International Journal of Theoretical Physics, 3, 507–508.

    Article  Google Scholar 

  • Cao, T. Y. (1997). Conceptual developments of 20th century field theories. Cambridge: Cambridge University Press.

    Google Scholar 

  • Casimir, H. B. G. (1948). On the attraction between two perfectly conducting plates. Proceedings of the Koninklijke Nederlandse Akadademie van Wetenschappen, 51, 793–796.

    Google Scholar 

  • Eidelman, S., et al. (2004). The review of particle physics. Physical Letters, B592, 1.

    Google Scholar 

  • Feynman, R. P. (1948). Space–time approach to non-relativistic quantum mechanics. Reviews of Modern Physics, 20(2), 367–387.

    Article  Google Scholar 

  • Feynman, R. P. (1949). Space–time approach to quantum electrodynamics. Physical Review, 76, 769–789.

    Article  Google Scholar 

  • Feynman, R. P., & Hibbs, A. R. (1965). Quantum mechanics and path integrals. New York: MacGraw-Hill.

    Google Scholar 

  • Frauenfelder, H., & Henley, E. (1975). Nuclear and particle physics. London: Benjamin.

    Google Scholar 

  • Frauenfelder, H., & Henley, E. (1995). Teilchen und Kerne (4th ed.). Munich: Oldenbourg.

    Google Scholar 

  • Griffiths, D. (1987). Introduction to elementary particles. New York: Wiley.

    Google Scholar 

  • Halzen, F., & Martin, A. (1984). Quarks and leptons. New York: Wiley.

    Google Scholar 

  • Harré, R. (1988). Parsing the amplitudes. In H. Brown & R. Harré (Eds.), Philosophical foundations of quantum field theory (pp. 59–71). Oxford: Clarendon Press.

  • Henley E., & Thirring, W. (1962). Elementary quantum field theory. New York: MacGraw-Hill.

    Google Scholar 

  • Itzykson, C., & Zuber, J. -B. (1980). Quantum field theory. New York: MacGraw-Hill.

    Google Scholar 

  • Nachtmann, O. (1990). Elementary particle physics. Berlin: Springer.

    Google Scholar 

  • Nolting, W. (1992). Grundkurs: Theoretische Physik. 5. Quantenmechanik (2nd reviewed edition). Ulmen: Zimmermann-Neufang.

  • Povh, B., et al. (1995). Particles and nuclei. New York: Springer.

    Google Scholar 

  • Redhead, M. (1988). A philosopher looks at quantum field theory. In H. Brown & R. Harré (Eds.), Philosophical foundations of quantum field theory (pp. 9–23). Oxford: Clarendon Press.

  • Röhl, J. (2005). Zur Wirklichkeit virtueller Prozesse in der Teilchenphysik. In G. Abel (Ed.), Kreativität (Vol. 1, pp. 467–477). Berlin: TU Berlin University Press.

    Google Scholar 

  • Rohrlich, F. (1999). On the ontology of QFT. In T. Y. Cao (Ed.), Conceptual foundations of quantum field theory (pp. 357–367). Cambridge: Cambridge University Press.

  • Sakurai, J. J. (1967). Advanced quantum mechanics. London: Addison-Wesley.

    Google Scholar 

  • Sparnaay, M. J. (1958). Measurements of attractive forces between flat plates. Physica, 24, 751–764.

    Article  Google Scholar 

  • Stöckler, M. (1987). Raum-Zeit-Strukturen in der Quantenfeldtheorie. In P. Weingartner & G.Schurz (Eds.), Logik, Wissenschaftstheorie und Erkenntnistheorie (pp. 263–266). Vienna: Norwell.

    Google Scholar 

  • Stöckler, M. (1990). Materie in Raum und Zeit? Philosophia Naturalis, 27, 111–135.

    Google Scholar 

  • Teller, P. (1995). An interpretive introduction to quantum field theory. Princeton: Princeton University Press.

    Google Scholar 

  • Weingard, R. (1982). Do virtual particles exist? In P. D. Asquith & T. Nickles (Eds.), Proceedings of the 1982 Biennial Meeting of the Philosophy of Science Association, (PSA 1982), (Vol. 1, pp. 235–242). East Lansing: Philosophy of Science Association.

    Google Scholar 

  • Weingard, R. (1988). Virtual particles and the interpretation of quantum field theory. In H. Brown & R. Harré (Eds.), Philosophical foundations of quantum field theory (pp. 43–58). Oxford: Clarendon Press.

  • Williams, W. S. T. (1991). Nuclear and particle physics. Oxford: Clarendon Press.

    Google Scholar 

  • Worrall, J. (Ed.). (1994). The ontology of science. Aldershot: Dartmouth.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Fox.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, T. Haunted by the Spectre of Virtual Particles: A Philosophical Reconsideration. J Gen Philos Sci 39, 35–51 (2008). https://doi.org/10.1007/s10838-008-9066-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10838-008-9066-9

Keywords

Navigation