Skip to main content

Animal Cloning: Scientific Endeavour, Perception and Ethical Debate

  • Chapter
  • First Online:
Handbook of Bioethical Decisions. Volume I

Part of the book series: Collaborative Bioethics ((CB,volume 2))

  • 645 Accesses

Abstract

In 1996, a single lamb born (Dolly) from an experiment involving 277 embryo reconstructions that developed into 29 early in vitro embryos that were transferred into 13 surrogate females, demonstrated that adult somatic cells can have nuclear developmental equivalence to the germ cell lineage. Dolly was the first mammal produced by the transfer of an adult somatic cell nucleus into an enucleated egg and improved the understanding of cellular reprogramming. Many thousands of cloned offspring demonstrate that animal cloning is consistent and adaptable to a wide variety of species. Pluripotent stem cell technologies have not superseded cloning in any livestock species. The advent of precise gene editing of donor cells used for animal cloning has renewed interest in the epigenetics, mitochondrial heteroplasmy and gene expression changes involved in nuclear reprogramming and normal development of the conceptus. Public perception of animal cloning, while initially negative, is starting to change, when the technology is seen to benefit the animal. Collectively, this implies that animal cloning will continue to offer solutions to a wide range of global challenges surrounding improved quality of food, animal models and pharmaceuticals for medical care and species conservation under a much wider public dialogue and bioethical systems review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aimar, C., & Gallien, C. L. (1972). Study by the skin homograft method of immune reactions in allocytoplasmic isogenic animals obtained by intra- and interspecific nuclear grafts in the genus Pleurodeles (Amphibia, Urodeles). Comptes Rendus Hebdomadaires Des Seances De L’academie Des Sciences. Serie D: Sciences Naturelles, 274(22), 3019–3022.

    Google Scholar 

  • Akagi, S., Adachi, N., Matsukawa, K., Kubo, M., & Takahashi, S. (2003). Developmental potential of bovine nuclear transfer embryos and postnatal survival rate of cloned calves produced by two different timings of fusion and activation. Molecular Reproduction and Development, 66(3), 264–272.

    Article  Google Scholar 

  • Akagi, S., Matsukawa, K., & Takahashi, S. (2014). Factors affecting the development of somatic cell nuclear transfer embryos in Cattle. The Journal of Reproduction and Development, 60(5), 329–335.

    Article  Google Scholar 

  • Alberio, R., & Wolf, E. (2021). 25th anniversary of cloing by somatic-cell nuclaer transfer: Nuclear transfer and the development of genetically modified/gene edited livestock. Reproduction, 162(1), F59–F68.

    Google Scholar 

  • Ashry, M., & Smith, G. W. (2015). Application of embryo transfer using in vitro produced embryos: Intrinsic factors affecting efficiency. Cattle Practice, 23(Pt 1), 1–8.

    Google Scholar 

  • Bishop, T., & Eenennaam, A. L. V. (2020). Genome editing approaches to augment livestock breeding programs. Journal of Experimental Biology, 223, jeb207159.

    Article  Google Scholar 

  • Bogliotti, Y. S., Wu, J., Vilarino, M., Okamura, D., Soto, D. A., Zhong, C., Sakurai, M., Sampaio, R. V., Suzuki, K., Izpisua Belmonte, J. C., & Ross, P. J. (2018). Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences, 115(9), 2090–2095.

    Article  Google Scholar 

  • Bowles, E. J., Tecirlioglu, R. T., French, A. J., Holland, M. K., & St John, J. C. (2008). Mitochondrial DNA transmission and transcription after somatic cell fusion to one or more cytoplasts. Stem Cells, 26(3), 775–782.

    Article  Google Scholar 

  • Briggs, R., & King, T. J. (1952). Transplantation of living nuclei from Blastula cells into enucleated frogs’ eggs. Proceedings of the National Academy of Sciences of the United States of America, 38(5), 455–463.

    Article  Google Scholar 

  • Briggs, R., & King, T. J. (1953). Factors affecting the transplantability of nuclei of frog embryonic cells. Journal of Experimental Zoology, 122(3), 485–505.

    Article  Google Scholar 

  • Brocken, D. J. W., Tark-Dame, M., & Dame, R. T. (2018). dCas9: A versatile tool for epigenome editing. Current Issues in Molecular Biology, 26, 15–32.

    Article  Google Scholar 

  • Bromhall, J. D. (1975). Nuclear transplantation in the rabbit egg. Nature, 258(5537), 719–722.

    Article  Google Scholar 

  • Brun, R., & Kobel, H. R. (1972). Des grenouilles métamorphosées obtenues par transplantation nucléaire à partir du prosencéphle et de l’épiderme larvaire de Xenopus laevis. Revue Suisse de Zoologie, 79, 961–965.

    Article  Google Scholar 

  • Campbell, K. H. S. (1999). Nuclear equivalence, nuclear transfer, and the cell cycle. Cloning, 1(1), 3–15.

    Article  Google Scholar 

  • Campbell, K. H. (2002). A background to nuclear transfer and its applications in agriculture and human therapeutic medicine. Journal of Anatomy, 200(Pt 3), 267–275.

    Article  Google Scholar 

  • Campbell, M. L. H. (2018). Is cloning horses ethical? Equine Veterinary Education, 30(5), 268–273.

    Article  Google Scholar 

  • Campbell, K. H., Loi, P., Otaegui, P. J., & Wilmut, I. (1996a). Cell cycle co-ordination in embryo cloning by nuclear transfer. Reviews of Reproduction, 1(1), 40–46.

    Article  Google Scholar 

  • Campbell, K. H., McWhir, J., Ritchie, W. A., & Wilmut, I. (1996b). Sheep cloned by nuclear transfer from a cultured cell line. Nature, 380(6569), 64–66.

    Article  Google Scholar 

  • Canovas, S., & Ross, P. J. (2016). Epigenetics in preimplantation mammalian development. Theriogenology, 86(1), 69–79.

    Article  Google Scholar 

  • Carlson, D. F., Lancto, C. A., Zang, B., Kim, E. S., Walton, M., Oldeschulte, D., Seabury, C., Sonstegard, T. S., & Fahrenkrug, S. C. (2016). Production of hornless dairy cattle from genome-edited cell lines. Nature Biotechnology, 34(5), 479–481.

    Article  Google Scholar 

  • Cascalho, M., & Platt, J. L. (2001). Xenotransplantation and other means of organ replacement. Nature Reviews Immunology, 1(2), 154–160.

    Article  Google Scholar 

  • Chen, Z., Li, S., Subramaniam, S., Shyy, J. Y., & Chien, S. (2017). Epigenetic regulation: A new frontier for biomedical engineers. Annual Review of Biomedical Engineering, 19, 195–219.

    Article  Google Scholar 

  • Cheong, H. T., Takahashi, Y., & Kanagawa, H. (1993). Birth of mice after transplantation of early cell-cycle-stage embryonic nuclei into enucleated oocytes. Biology of Reproduction, 48(5), 958–963.

    Article  Google Scholar 

  • Choi, Y.-H., Norris, J. D., Velez, I. C., Jacobson, C. C., Hartman, D. L., & Hinrichs, K. (2013). A viable foal obtained by equine somatic cell nuclear transfer using oocytes recovered from immature follicles of live mares. Theriogenology, 79(5), 791–796.e791.

    Article  Google Scholar 

  • Chung, Y. G., Matoba, S., Liu, Y., Eum, J. H., Lu, F., Jiang, W., Lee, J. E., Sepilian, V., Cha, K. Y., Lee, D. R., & Zhang, Y. (2015). Histone Demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell, 17(6), 758–766.

    Article  Google Scholar 

  • Ciccarelli, M., Giassetti, M. I., Miao, D., Oatley, M. J., Robbins, C., Lopez-Biladeau, B., Waqas, M. S., Tibary, A., Whitelaw, B., Lillico, S., Park, C.-H., Park, K.-E., Telugu, B., Fan, Z., Liu, Y., Regouski, M., Polejaeva, I. A., & Oatley, J. M. (2020). Donor-derived spermatogenesis following stem cell transplantation in sterile NANOS2 knockout males. Proceedings of the National Academy of Sciences, 117(39), 24195–24204.

    Article  Google Scholar 

  • Collas, P., & Barnes, F. L. (1994). Nuclear transplantation by microinjection of inner cell mass and granulosa cell nuclei. Molecular Reproduction and Development, 38(3), 264–267.

    Article  Google Scholar 

  • Colman, A. (1999). Somatic cell nuclear transfer in mammals: Progress and applications. Cloning, 1(4), 185–200.

    Article  Google Scholar 

  • Cormick, C. M. R. (2019). Community attitudes towards gene technolgy. J2853 Office of the Gene Technology Regulator, Australian Government. www.ogtr.gov.au

    Google Scholar 

  • Corr, S. A., Gardner, D. S., Langley-Hobbs, S., Ness, M. G., Kitchener, A. C., & Sinclair, K. D. (2017). Radiographic assessment of the skeletons of Dolly and other clones finds no abnormal osteoarthritis. Scientific Reports, 7(1), 15685.

    Article  Google Scholar 

  • Czernik, M., Iuso, D., Toschi, P., Khochbin, S., & Loi, P. (2016). Remodeling somatic nuclei via exogenous expression of protamine 1 to create spermatid-like structures for somatic nuclear transfer. Nature Protocols, 11(11), 2170–2188.

    Article  Google Scholar 

  • Czernik, M., Anzalone, D. A., Palazzese, L., Oikawa, M., & Loi, P. (2019). Somatic cell nuclear transfer: Failures, successes and the challenges ahead. The International Journal of Developmental Biology, 63(3-4-5), 123–130.

    Article  Google Scholar 

  • Di Berardino, M. A. (1997a). Genomic potential of differentiated cells. Columbia University Press.

    Google Scholar 

  • Di Berardino, M. A. (1997b). Jean Brachet Memorial Lecture to the ninth international conference of the international society of differentiation: Genomic potential–Acetabularia to mammals. Journal of Cellular Physiology, 173(2), 119–123.

    Article  Google Scholar 

  • Di Berardino, M. A. (2001). Animal cloning--the route to new genomics in agriculture and medicine. Differentiation, 68(2–3), 67–83.

    Article  Google Scholar 

  • Di Berardino, M. A., & Hoffner, N. J. (1983). Gene reactivation in erythrocytes: Nuclear transplantation in oocytes and eggs of Rana. Science, 219(4586), 862–864.

    Article  Google Scholar 

  • Di Berardino, M. A., Orr, N. H., & McKinnell, R. G. (1986). Feeding tadpoles cloned from Rana erythrocyte nuclei. Proceedings of the National Academy of Sciences of the United States of America, 83(21), 8231–8234.

    Article  Google Scholar 

  • Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., & Smithies, O. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 330(6148), 576–578.

    Article  Google Scholar 

  • Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096.

    Article  Google Scholar 

  • Driesch, H. (1892). Entwicklungsmechanische Studien. I. der Wert der beiden ersten furchungszellen in der Echinoderenenttwicklung. Experimentelle Erzeugug von teilund doppelbildungen. Zeitschrift für Wissenschaftliche Zoologie, 53, 160–184.

    Google Scholar 

  • European Food Safety Authority. (2012). Cloning. https://www.efsa.europa.eu/en/topics/topic/cloning

  • Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  Google Scholar 

  • Fiester, A. (2005). Ethical issues in animal cloning. Perspectives in Biology and Medicine, 48(3), 328–343.

    Article  Google Scholar 

  • Fischberg, M., Gurdon, J. B., & Elsdale, T. R. (1958). Nuclear transplantation in Xenopus laevis. Nature, 181(4606), 424–424.

    Article  Google Scholar 

  • Fleming, T. P., Kwong, W. Y., Porter, R., Ursell, E., Fesenko, I., Wilkins, A., Miller, D. J., Watkins, A. J., & Eckert, J. J. (2004). The embryo and its future. Biology of Reproduction, 71(4), 1046–1054.

    Article  Google Scholar 

  • Food & Drug Administration, U. S. (2008). Animal cloning. https://www.fda.gov/animal-veterinary/safety-health/animal-cloning

  • Fox, J. L. (2008). Cloned animals deemed safe to eat, but labeling issues loom. Nature Biotechnology, 26(3), 249–250.

    Article  Google Scholar 

  • Fulka, H., Ogura, A., Loi, P., & Fulka, J., Jr. (2019). Dissecting the role of the germinal vesicle nuclear envelope and soluble content in the process of somatic cell remodelling and reprogramming. The Journal of Reproduction and Development, 65(5), 433–441.

    Article  Google Scholar 

  • Galli, C., & Lazzari, G. (2021). 25th anniversary of cloning by somatic-cell nuclear transfer: Current applications of SCNT in advanced breeding and genome editing in livestock. Reproduction, 162(1), F23–f32.

    Google Scholar 

  • Galli, C., Lagutina, I., & Lazzari, G. (2003). Introduction to cloning by nuclear transplantation. Cloning and Stem Cells, 5(4), 223–232.

    Article  Google Scholar 

  • Gao, S., Chung, Y. G., Parseghian, M. H., King, G. J., Adashi, E. Y., & Latham, K. E. (2004). Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: Evidence for a uniform developmental program in mice. Developmental Biology, 266(1), 62–75.

    Article  Google Scholar 

  • Gao, X., Nowak-Imialek, M., Chen, X., Chen, D., Herrmann, D., Ruan, D., Chen, A. C. H., Eckersley-Maslin, M. A., Ahmad, S., Lee, Y. L., Kobayashi, T., Ryan, D., Zhong, J., Zhu, J., Wu, J., Lan, G., Petkov, S., Yang, J., Antunes, L., Campos, L. S., Fu, B., Wang, S., Yong, Y., Wang, X., Xue, S. G., Ge, L., Liu, Z., Huang, Y., Nie, T., Li, P., Wu, D., Pei, D., Zhang, Y., Lu, L., Yang, F., Kimber, S. J., Reik, W., Zou, X., Shang, Z., Lai, L., Surani, A., Tam, P. P. L., Ahmed, A., Yeung, W. S. B., Teichmann, S. A., Niemann, H., & Liu, P. (2019). Establishment of porcine and human expanded potential stem cells. Nature Cell Biology, 21(6), 687–699.

    Article  Google Scholar 

  • Gouveia, C., Huyser, C., Egli, D., & Pepper, M. S. (2020). Lessons learned from somatic cell nuclear transfer. International Journal of Molecular Sciences, 21(7), 2314.

    Article  Google Scholar 

  • Greenfield, A. (2021). 25th anniversary of cloning by somatic-cell nuclear transfer: Cloning, mitochondrial replacement and genome editing: 25 years of ethical debate since Dolly. Reproduction, 162(1), F69–f78.

    Google Scholar 

  • Greenfield, A., Braude, P., Flinter, F., Lovell-Badge, R., Ogilvie, C., & Perry, A. C. F. (2017). Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nature Biotechnology, 35(11), 1059–1068.

    Article  Google Scholar 

  • Gu, C., Liu, S., Wu, Q., Zhang, L., & Guo, F. (2019). Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes. Cell Research, 29(2), 110–123.

    Article  Google Scholar 

  • Gurdon, J. B. (1962). The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. Journal of Embryology and Experimental Morphology, 10, 622–640.

    Google Scholar 

  • Gurdon, J. B. (1974). The control of gene expression in animal development. Clarendon Press. https://onlinelibrary.wiley.com/doi/abs/10.1016/0307-4412%2874%2990047-8

    Google Scholar 

  • Gurdon, J. B. (1999). Genetic reprogramming following nuclear transplantation in Amphibia. Seminars in Cell & Developmental Biology, 10(3), 239–243.

    Article  Google Scholar 

  • Gurdon, J. B., & Colman, A. (1999). The future of cloning. Nature, 402(6763), 743–746.

    Article  Google Scholar 

  • Gurdon, J. B., & Uehlinger, V. (1966). “Fertile” intestine nuclei. Nature, 210(5042), 1240–1241.

    Article  Google Scholar 

  • Gurdon, J. B., Elsdale, T. R., & Fischberg, M. (1958). Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature, 182(4627), 64–65.

    Article  Google Scholar 

  • Gurdon, J. B., Laskey, R. A., & Reeves, O. R. (1975). The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. Journal of Embryology and Experimental Morphology, 34(1), 93–112.

    Google Scholar 

  • Hayashi, K. (2019). In vitro reconstitution of germ cell development†. Biology of Reproduction, 101(3), 567–578.

    Article  Google Scholar 

  • Hennen, S. (1970). Influence of spermine and reduced temperature on the ability of transplanted nuclei to promote normal development in eggs of Rana pipiens. Proceedings of the National Academy of Sciences of the United States of America, 66(3), 630–637.

    Article  Google Scholar 

  • Heyman, Y. (2005). Nuclear transfer: A new tool for reproductive biotechnology in cattle. Reproduction, Nutrition, Development, 45(3), 353–361.

    Article  Google Scholar 

  • Heyman, Y., Chavatte-Palmer, P., Fromentin, G., Berthelot, V., Jurie, C., Bas, P., Dubarry, M., Mialot, J. P., Remy, D., Richard, C., Martignat, L., Vignon, X., & Renard, J. P. (2007). Quality and safety of bovine clones and their products. Animal, 1(7), 963–972.

    Article  Google Scholar 

  • Hildebrandt, T. B., Hermes, R., Colleoni, S., Diecke, S., Holtze, S., Renfree, M. B., Stejskal, J., Hayashi, K., Drukker, M., Loi, P., Göritz, F., Lazzari, G., & Galli, C. (2018). Embryos and embryonic stem cells from the white rhinoceros. Nature Communications, 9(1), 2589.

    Article  Google Scholar 

  • Hildebrandt, T. B., Hermes, R., Goeritz, F., Appeltant, R., Colleoni, S., de Mori, B., Diecke, S., Drukker, M., Galli, C., Hayashi, K., Lazzari, G., Loi, P., Payne, J., Renfree, M., Seet, S., Stejskal, J., Swegen, A., Williams, S. A., Zainuddin, Z. Z., & Holtze, S. (2021). The ART of bringing extinction to a freeze – History and future of species conservation, exemplified by rhinos. Theriogenology, 169, 76–88.

    Article  Google Scholar 

  • Hirata, M., Wittayarat, M., Tanihara, F., Sato, Y., Namula, Z., Le, Q. A., Lin, Q., Takebayashi, K., & Otoi, T. (2020). One-step genome editing of porcine zygotes through the electroporation of a CRISPR/Cas9 system with two guide RNAs. In Vitro Cellular and Developmental Biology - Animal, 56(8), 614–621.

    Article  Google Scholar 

  • Hoppe, P. C., & Illmensee, K. (1982). Full-term development after transplantation of parthenogenetic embryonic nuclei into fertilized mouse eggs. Proceedings of the National Academy of Sciences of the United States of America, 79(6), 1912–1916.

    Article  Google Scholar 

  • Illmensee, K. (1999). Controversy over the cloning of mice. Nature, 398(6722), 19–20.

    Article  Google Scholar 

  • Illmensee, K. (2007). Mammalian cloning and its discussion on applications in medicine. Journal of Reproductive Medicine and Endocrinology, 4(1), 6–16.

    Google Scholar 

  • Illmensee, K., & Hoppe, P. C. (1981). Nuclear transplantation in Mus musculus: Developmental potential of nuclei from preimplantation embryos. Cell, 23(1), 9–18.

    Article  Google Scholar 

  • Inoue, K., Kohda, T., Lee, J., Ogonuki, N., Mochida, K., Noguchi, Y., Tanemura, K., Kaneko-Ishino, T., Ishino, F., & Ogura, A. (2002). Faithful expression of imprinted genes in cloned mice. Science, 295(5553), 297.

    Article  Google Scholar 

  • ISSCR. (2021). ISSCR guidelines for stem cell research and clinical translation. https://www.isscr.org/

  • Keefer, C. L. (2015). Artificial cloning of domestic animals. Proceedings of the National Academy of Sciences of the United States of America, 112(29), 8874–8878.

    Article  Google Scholar 

  • Keefer, C. L., Stice, S. L., & Matthews, D. L. (1994). Bovine inner cell mass cells as donor nuclei in the production of nuclear transfer embryos and calves. Biology of Reproduction, 50(4), 935–939.

    Article  Google Scholar 

  • Kim, M. J., Oh, H. J., Hwang, S. Y., Hur, T. Y., & Lee, B. C. (2018). Health and temperaments of cloned working dogs. Journal of Veterinary Science, 19(5), 585–591.

    Article  Google Scholar 

  • King, T. J., & Briggs, R. (1955). Chnages in the Nuclei of Differentiating Gastrula Cells, as demonstrated by nuclear transplantation. Proceedings of the National Academy of Sciences of the United States of America, 41(5), 321–325.

    Article  Google Scholar 

  • King, T. J., & Briggs, R. (1956). Serial transplantation of embryonic nuclei. Cold Spring Harbor Symposia on Quantitative Biology, 21, 271–290.

    Article  Google Scholar 

  • Kishigami, S., Mizutani, E., Ohta, H., Hikichi, T., Thuan, N. V., Wakayama, S., Bui, H. T., & Wakayama, T. (2006). Significant improvement of mouse cloning technique by treatment with Trichostatin A after somatic nuclear transfer. Biochemical and Biophysical Research Communications, 340(1), 183–189.

    Article  Google Scholar 

  • Klinger, B., & Schnieke, A. (2021). 25th anniversary of cloning by somatic-cell nuclear transfer: Twenty-five years after Dolly: How far have we come? Reproduction, 162(1), F1–f10.

    Google Scholar 

  • Klymiuk, N., Blutke, A., Graf, A., Krause, S., Burkhardt, K., Wuensch, A., Krebs, S., Kessler, B., Zakhartchenko, V., Kurome, M., Kemter, E., Nagashima, H., Schoser, B., Herbach, N., Blum, H., Wanke, R., Aartsma-Rus, A., Thirion, C., Lochmüller, H., Walter, M. C., & Wolf, E. (2013). Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle. Human Molecular Genetics, 22(21), 4368–4382.

    Article  Google Scholar 

  • Kobel, H. R., Brun, R. B., & Fischberg, M. (1973). Nuclear transplantation with melanophores, ciliated epidermal cells, and the established cell-line A-8 in Xenopus laevis. Journal of Embryology and Experimental Morphology, 29(3), 539–547.

    Google Scholar 

  • Kohda, T., Kishigami, S., Kaneko-Ishino, T., Wakayama, T., & Ishino, F. (2012). Gene expression profile normalization in cloned mice by Trichostatin A treatment. Cellular Reprogramming, 14(1), 45–55.

    Article  Google Scholar 

  • Kues, W. A., & Niemann, H. (2004). The contribution of farm animals to human health. Trends in Biotechnology, 22(6), 286–294.

    Article  Google Scholar 

  • Kuroiwa, Y., Kasinathan, P., Choi, Y. J., Naeem, R., Tomizuka, K., Sullivan, E. J., Knott, J. G., Duteau, A., Goldsby, R. A., Osborne, B. A., Ishida, I., & Robl, J. M. (2002). Cloned transchromosomic calves producing human immunoglobulin. Nature Biotechnology, 20(9), 889–894.

    Article  Google Scholar 

  • Kuroiwa, Y., Kasinathan, P., Matsushita, H., Sathiyaselan, J., Sullivan, E. J., Kakitani, M., Tomizuka, K., Ishida, I., & Robl, J. M. (2004). Sequential targeting of the genes encoding immunoglobulin-mu and prion protein in cattle. Nature Genetics, 36(7), 775–780.

    Article  Google Scholar 

  • La Salle, S. (2012). Growing fast or slow: What makes the best embryo? Biology of Reproduction, 86(142), 141–142.

    Google Scholar 

  • Lanza, R. P., Cibelli, J. B., Diaz, F., Moraes, C. T., Farin, P. W., Farin, C. E., Hammer, C. J., West, M. D., & Damiani, P. (2000). Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning, 2(2), 79–90.

    Article  Google Scholar 

  • Lazzari, G., Colleoni, S., Giannelli, S. G., Brunetti, D., Colombo, E., Lagutina, I., Galli, C., & Broccoli, V. (2006). Direct derivation of neural rosettes from cloned bovine blastocysts: A model of early neurulation events and neural crest specification in vitro. Stem Cells, 24(11), 2514–2521.

    Article  Google Scholar 

  • Le, Q. A., Tanihara, F., Wittayarat, M., Namula, Z., Sato, Y., Lin, Q., Takebayashi, K., Hirata, M., & Otoi, T. (2021). Comparison of the effects of introducing the CRISPR/Cas9 system by microinjection and electroporation into porcine embryos at different stages. BMC Research Notes, 14(1), 7.

    Article  Google Scholar 

  • Lee, H., Yoon, D. E., & Kim, K. (2020). Genome editing methods in animal models. Animal Cells and Systems (Seoul), 24(1), 8–16.

    Article  Google Scholar 

  • Lewis, I. M., Munsie, M. J., French, A. J., Daniels, R., & Trounson, A. O. (2001). The cloning cycle: From amphibia to mammals and back. Reproductive Medicine Review, 9(1), 3–31.

    Article  Google Scholar 

  • Li, W., Lee, M. H., Henderson, L., Tyagi, R., Bachani, M., Steiner, J., Campanac, E., Hoffman, D. A., von Geldern, G., Johnson, K., Maric, D., Morris, H. D., Lentz, M., Pak, K., Mammen, A., Ostrow, L., Rothstein, J., & Nath, A. (2015). Human endogenous retrovirus-K contributes to motor neuron disease. Science Translational Medicine, 7(307), 307ra153.

    Article  Google Scholar 

  • Lin, J., Shi, L., Zhang, M., Yang, H., Qin, Y., Zhang, J., Gong, D., Zhang, X., Li, D., & Li, J. (2011). Defects in trophoblast cell lineage account for the impaired in vivo development of cloned embryos generated by somatic nuclear transfer. Cell Stem Cell, 8(4), 371–375.

    Article  Google Scholar 

  • Lindner, G. M., & Wright, R. W. (1983). Bovine embryo morphology and evaluation. Theriogenology, 20(4), 407–416.

    Article  Google Scholar 

  • Liu, W., Liu, X., Wang, C., Gao, Y., Gao, R., Kou, X., Zhao, Y., Li, J., Wu, Y., Xiu, W., Wang, S., Yin, J., Liu, W., Cai, T., Wang, H., Zhang, Y., & Gao, S. (2016). Identification of key factors conquering developmental arrest of somatic cell cloned embryos by combining embryo biopsy and single-cell sequencing. Cell Discovery, 2(1), 16010.

    Article  Google Scholar 

  • Liu, X., Wang, Y., Gao, Y., Su, J., Zhang, J., Xing, X., Zhou, C., Yao, K., An, Q., & Zhang, Y. (2018a). H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development, 145(4), dev158261.

    Article  Google Scholar 

  • Liu, Z., Cai, Y., Wang, Y., Nie, Y., Zhang, C., Xu, Y., Zhang, X., Lu, Y., Wang, Z., Poo, M., & Sun, Q. (2018b). Cloning of Macaque Monkeys by somatic cell nuclear transfer. Cell, 172(4), 881–887.e887.

    Article  Google Scholar 

  • Loi, P., Palazzese, L., Scapolo, P. A., Fulka, J., Fulka, H., & Czernik, M. (2021). 25th anniversary of cloning by somatic-cell nuclear transfer: Scientific and technological approaches to improve SCNT efficiency in farm animals and pets. Reproduction, 162(1), F33–f43.

    Google Scholar 

  • Lu, F., Liu, Y., Inoue, A., Suzuki, T., Zhao, K., & Zhang, Y. (2016). Establishing chromatin regulatory landscape during mouse preimplantation development. Cell, 165(6), 1375–1388.

    Article  Google Scholar 

  • Maalouf, W. E., Liu, Z., Brochard, V., Renard, J.-P., Debey, P., Beaujean, N., & Zink, D. (2009). Trichostatin A treatment of cloned mouse embryos improves constitutive heterochromatin remodeling as well as developmental potential to term. BMC Developmental Biology, 9(1), 11.

    Article  Google Scholar 

  • Madheshiya, P. K., Sahare, A. A., Jyotsana, B., Singh, K. P., Saini, M., Raja, A. K., Kaith, S., Singla, S. K., Chauhan, M. S., Manik, R. S., & Palta, P. (2015). Production of a Cloned Buffalo (Bubalus bubalis) Calf from Somatic Cells Isolated from Urine. Cellular Reprogramming, 17(3), 160–169.

    Article  Google Scholar 

  • Mapletoft, R. J., & Hasler, J. F. (2005). Assisted reproductive technologies in cattle: A review. Revue Scientifique et Technique, 24(1), 393–403.

    Article  Google Scholar 

  • Marión, R. M., & Blasco, M. A. (2010). Telomere rejuvenation during nuclear reprogramming. Current Opinion in Genetics & Development, 20(2), 190–196.

    Article  Google Scholar 

  • Martínez-Soler, F., Kurtz, K., & Chiva, M. (2007). Sperm nucleomorphogenesis in the cephalopod Sepia officinalis. Tissue & Cell, 39(2), 99–108.

    Article  Google Scholar 

  • Martins, L. T., Neto, S. G., Tavares, K. C. S., Calderón, C. E. M., Aguiar, L. H., Lazzarotto, C. R., Ongaratto, F. L., Rodrigues, V. H. V., Carneiro, I. D. S., Rossetto, R., Almeida, A. P., Fernandes, C. C. L., Rondina, D., Dias, A. C. O., Chies, J. M., Polejaeva, I. A., Rodrigues, J. L., Forell, F., Bertolini, L. R., & Bertolini, M. (2016). Developmental outcome and related abnormalities in Goats: Comparison between somatic cell nuclear transfer- and in vivo-derived concepti during pregnancy through term. Cellular Reprogramming, 18(4), 264–279.

    Article  Google Scholar 

  • Marx, J. L. (1983a). Swiss research questioned. Science, 220(4601), 1023.

    Article  Google Scholar 

  • Marx, J. L. (1983b). Bar Harbor investigation reveals no fraud. Science, 220(4603), 1254.

    Article  Google Scholar 

  • Matoba, S., & Zhang, Y. (2018). Somatic cell nuclear transfer reprogramming: Mechanisms and applications. Cell Stem Cell, 23(4), 471–485.

    Article  Google Scholar 

  • Matoba, S., Liu, Y., Lu, F., Iwabuchi, K. A., Shen, L., Inoue, A., & Zhang, Y. (2014). Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell, 159(4), 884–895.

    Article  Google Scholar 

  • Matoba, S., Wang, H., Jiang, L., Lu, F., Iwabuchi, K. A., Wu, X., Inoue, K., Yang, L., Press, W., Lee, J. T., Ogura, A., Shen, L., & Zhang, Y. (2018). Loss of H3K27me3 imprinting in somatic cell nuclear transfer embryos disrupts post-implantation development. Cell Stem Cell, 23(3), 343–354.e345.

    Article  Google Scholar 

  • McConnachie, E., Hötzel, M. J., Robbins, J. A., Shriver, A., Weary, D. M., & von Keyserlingk, M. A. G. (2019). Public attitudes towards genetically modified polled cattle. PLoS One, 14(5), e0216542.

    Article  Google Scholar 

  • McCreath, K. J., Howcroft, J., Campbell, K. H., Colman, A., Schnieke, A. E., & Kind, A. J. (2000). Production of gene-targeted sheep by nuclear transfer from cultured somatic cells. Nature, 405(6790), 1066–1069.

    Article  Google Scholar 

  • McGrath, J., & Solter, D. (1983). Nuclear transplantation in mouse embryos. The Journal of Experimental Zoology, 228(2), 355–362.

    Article  Google Scholar 

  • McGraw, S., Vigneault, C., Tremblay, K., & Sirard, M. A. (2006). Characterization of linker histone H1FOO during bovine in vitro embryo development. Molecular Reproduction and Development, 73(6), 692–699. https://doi.org/10.1002/mrd.20448. PMID: 16470586.

  • McKinnell, R. G., & Di Berardino, M. A. (1999). The biology of cloning: History and rationale. Bioscience, 49(11), 875–885.

    Article  Google Scholar 

  • Menchaca, A., dos Santos-Neto, P. C., Souza-Neves, M., Cuadro, F., Mulet, A. P., Tesson, L., Chenouard, V., Guiffès, A., Heslan, J. M., Gantier, M., Anegón, I., & Crispo, M. (2020). Otoferlin gene editing in sheep via CRISPR-assisted ssODN-mediated Homology Directed Repair. Scientific Reports, 10(1), 5995.

    Article  Google Scholar 

  • Miyamoto, K., Nguyen, K. T., Allen, G. E., Jullien, J., Kumar, D., Otani, T., Bradshaw, C. R., Livesey, F. J., Kellis, M., & Gurdon, J. B. (2018). Chromatin accessibility impacts transcriptional reprogramming in Oocytes. Cell Reports, 24(2), 304–311.

    Article  Google Scholar 

  • Moretti, A., Fonteyne, L., Giesert, F., Hoppmann, P., Meier, A. B., Bozoglu, T., Baehr, A., Schneider, C. M., Sinnecker, D., Klett, K., Fröhlich, T., Rahman, F. A., Haufe, T., Sun, S., Jurisch, V., Kessler, B., Hinkel, R., Dirschinger, R., Martens, E., Jilek, C., Graf, A., Krebs, S., Santamaria, G., Kurome, M., Zakhartchenko, V., Campbell, B., Voelse, K., Wolf, A., Ziegler, T., Reichert, S., Lee, S., Flenkenthaler, F., Dorn, T., Jeremias, I., Blum, H., Dendorfer, A., Schnieke, A., Krause, S., Walter, M. C., Klymiuk, N., Laugwitz, K. L., Wolf, E., Wurst, W., & Kupatt, C. (2020). Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nature Medicine, 26(2), 207–214.

    Article  Google Scholar 

  • Narbonne, P., Miyamoto, K., & Gurdon, J. B. (2012). Reprogramming and development in nuclear transfer embryos and in interspecific systems. Current Opinion in Genetics & Development, 22(5), 450–458.

    Article  Google Scholar 

  • Navarro, M., Soto, D. A., Pinzon, C. A., Wu, J., & Ross, P. J. (2020). Livestock pluripotency is finally captured in vitro. Reproduction, Fertility and Development, 32(2), 11–39.

    Article  Google Scholar 

  • Niemann, H., & Lucas-Hahn, A. (2012). Somatic cell nuclear transfer cloning: Practical applications and current legislation. Reproduction in Domestic Animals, 47(Suppl 5), 2–10.

    Article  Google Scholar 

  • Ogura, A., Inoue, K., & Wakayama, T. (2013). Recent advancements in cloning by somatic cell nuclear transfer. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 368(1609), 20110329.

    Article  Google Scholar 

  • Ogura, A., Matoba, S., & Inoue, K. (2021). 25th anniversary of cloning by somatic-cell nuclear transfer: Epigenetic abnormalities associated with somatic cell nuclear transfer. Reproduction, 162(1), F45–f58.

    Google Scholar 

  • Ono, T., Li, C., Mizutani, E., Terashita, Y., Yamagata, K., & Wakayama, T. (2010). Inhibition of class IIb histone deacetylase significantly improves cloning efficiency in Mice1. Biology of Reproduction, 83(6), 929–937.

    Article  Google Scholar 

  • Palazzese, L., Czernik, M., Iuso, D., Toschi, P., & Loi, P. (2018). Nuclear quiescence and histone hyper-acetylation jointly improve protamine-mediated nuclear remodeling in sheep fibroblasts. PLoS One, 13(3), e0193954.

    Article  Google Scholar 

  • Palmieri, C., Loi, P., Ptak, G., & Della Salda, L. (2008). Review paper: A review of the pathology of abnormal placentae of somatic cell nuclear transfer clone pregnancies in cattle, sheep, and mice. Veterinary Pathology, 45(6), 865–880.

    Article  Google Scholar 

  • Paterson, L., DeSousa, P., Ritchie, W., King, T., & Wilmut, I. (2003). Application of reproductive biotechnology in animals: Implications and potentials. Applications of reproductive cloning. Animal Reproduction Science, 79(3–4), 137–143.

    Article  Google Scholar 

  • Perisse, I. V., Fan, Z., Singina, G. N., White, K. L., & Polejaeva, I. A. (2021). Improvements in gene editing technology boost its applications in livestock [Review]. Frontiers in Genetics, 11(1713), 614688.

    Article  Google Scholar 

  • Perleberg, C., Kind, A., & Schnieke, A. (2018). Genetically engineered pigs as models for human disease. Disease Models & Mechanisms, 11(1), dmm030783.

    Article  Google Scholar 

  • Perota, A., Lagutina, I., Duchi, R., Zanfrini, E., Lazzari, G., Judor, J. P., Conchon, S., Bach, J. M., Bottio, T., Gerosa, G., Costa, C., Galiñanes, M., Roussel, J. C., Padler-Karavani, V., Cozzi, E., Soulillou, J. P., & Galli, C. (2019). Generation of cattle knockout for galactose-α1,3-galactose and N-glycolylneuraminic acid antigens. Xenotransplantation, 26(5), e12524.

    Article  Google Scholar 

  • Polejaeva, I. A. (2021). 25th anniversary of cloning by somatic-cell nuclear transfer: Generation of genetically engineered livestock using somatic cell nuclear transfer. Reproduction, 162(1), F11–f22.

    Google Scholar 

  • Polejaeva, I. A., Chen, S. H., Vaught, T. D., Page, R. L., Mullins, J., Ball, S., Dai, Y., Boone, J., Walker, S., Ayares, D. L., Colman, A., & Campbell, K. H. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature, 407(6800), 86–90.

    Article  Google Scholar 

  • Prakash, D., Verma, S., Bhatia, R., & Tiwary, B. N. (2011). Risks and precautions of genetically modified organisms. ISRN Ecology, 2011, 369573.

    Article  Google Scholar 

  • Prather, R. S., Barnes, F. L., Sims, M. M., Robl, J. M., Eyestone, W. H., & First, N. L. (1987). Nuclear transplantation in the bovine embryo: Assessment of donor nuclei and recipient oocyte. Biology of Reproduction, 37(4), 859–866.

    Article  Google Scholar 

  • Regensburger, A. P., Fonteyne, L. M., Jüngert, J., Wagner, A. L., Gerhalter, T., Nagel, A. M., Heiss, R., Flenkenthaler, F., Qurashi, M., Neurath, M. F., Klymiuk, N., Kemter, E., Fröhlich, T., Uder, M., Woelfle, J., Rascher, W., Trollmann, R., Wolf, E., Waldner, M. J., & Knieling, F. (2019). Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nature Medicine, 25(12), 1905–1915.

    Article  Google Scholar 

  • Renner, S., Blutke, A., Clauss, S., Deeg, C. A., Kemter, E., Merkus, D., Wanke, R., & Wolf, E. (2020). Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell and Tissue Research, 380(2), 341–378.

    Article  Google Scholar 

  • Robert, J. S. (2006). The science and ethics of making part-human animals in stem cell biology. The FASEB Journal, 20(7), 838–845.

    Article  Google Scholar 

  • Robl, J. M., Gilligan, B., Critser, E. S., & First, N. L. (1986). Nuclear transplantation in mouse embryos: Assessment of recipient cell stage. Biology of Reproduction, 34(4), 733–739.

    Article  Google Scholar 

  • Robl, J. M., Prather, R., Barnes, F., Eyestone, W., Northey, D., Gilligan, B., & First, N. L. (1987). Nuclear transplantation in bovine embryos. Journal of Animal Science, 64(2), 642–647.

    Article  Google Scholar 

  • Rogers, C. S. (2016). Genetically engineered livestock for biomedical models. Transgenic Research, 25(3), 345–359.

    Article  Google Scholar 

  • Rogers, C. S., Abraham, W. M., Brogden, K. A., Engelhardt, J. F., Fisher, J. T., McCray, P. B., Jr., McLennan, G., Meyerholz, D. K., Namati, E., Ostedgaard, L. S., Prather, R. S., Sabater, J. R., Stoltz, D. A., Zabner, J., & Welsh, M. J. (2008). The porcine lung as a potential model for cystic fibrosis. American Journal of Physiology. Lung Cellular and Molecular Physiology, 295(2), L240–L263.

    Article  Google Scholar 

  • Rollin, B. (1981). Animal rights and human morality (1st ed.). Prometheus Books.

    Google Scholar 

  • Roux, W. (1888). Beitrage zur Entwickelungsmechanik des Embryo. ueber die kunstliche hervorbringung halber embryonen durch Nachtwickelung einer der beiden ersten Furchungskugeln, sowie uber die Nachtwickelung (Poster generation) der Fehlenden Korperhalfte. Virchows Arch. Virchows Archiv fur Pathologische Anatomie und Physiologie und fur Klinische Medizin, 114, 113–153.

    Article  Google Scholar 

  • Rybouchkin, A., Kato, Y., & Tsunoda, Y. (2006). Role of Histone Acetylation in reprogramming of somatic nuclei following Nuclear Transfer1. Biology of Reproduction, 74(6), 1083–1089.

    Article  Google Scholar 

  • Saad, L. (2004). The cultural landscape: What’s morally acceptable.

    Google Scholar 

  • Sampaio, R. V., Sangalli, J. R., De Bem, T. H. C., Ambrizi, D. R., del Collado, M., Bridi, A., de Ávila, A. C. F. C. M., Macabelli, C. H., de Jesus Oliveira, L., da Silveira, J. C., Chiaratti, M. R., Perecin, F., Bressan, F. F., Smith, L. C., Ross, P. J., & Meirelles, F. V. (2020). Catalytic inhibition of H3K9me2 writers disturbs epigenetic marks during bovine nuclear reprogramming. Scientific Reports, 10(1), 11493.

    Article  Google Scholar 

  • Sandler, R. L., Moses, L., & Wisely, S. M. (2021). An ethical analysis of cloning for genetic rescue: Case study of the black-footed ferret. Biological Conservation, 257, 109118.

    Article  Google Scholar 

  • Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., & Lai, F. A. (2002). PLC zeta: A sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development, 129(15), 3533–3544.

    Article  Google Scholar 

  • Sayaka, W., Satoshi, K., Van Thuan, N., Hiroshi, O., Takafusa, H., Eiji, M., Thuy, B. H., Masashi, M., & Teruhiko, W. (2008). Effect of volume of oocyte cytoplasm on embryo development after parthenogenetic activation, intracytoplasmic sperm injection, or somatic cell nuclear transfer. Zygote, 16(3), 211–222.

    Article  Google Scholar 

  • Scarfone, R. A., Pena, S. M., Russell, K. A., Betts, D. H., & Koch, T. G. (2020). The use of induced pluripotent stem cells in domestic animals: A narrative review. BMC Veterinary Research, 16(1), 477.

    Article  Google Scholar 

  • Schneider, J. W., Oommen, S., Qureshi, M. Y., Goetsch, S. C., Pease, D. R., Sundsbak, R. S., Guo, W., Sun, M., Sun, H., Kuroyanagi, H., Webster, D. A., Coutts, A. W., Holst, K. A., Edwards, B. S., Newville, N., Hathcock, M. A., Melkamu, T., Briganti, F., Wei, W., Romanelli, M. G., Fahrenkrug, S. C., Frantz, D. E., Olson, T. M., Steinmetz, L. M., Carlson, D. F., & Nelson, T. J. (2020). Dysregulated ribonucleoprotein granules promote cardiomyopathy in RBM20 gene-edited pigs. Nature Medicine, 26(11), 1788–1800.

    Article  Google Scholar 

  • Shiels, P. G., Kind, A. J., Campbell, K. H. S., Waddington, D., Wilmut, I., Colman, A., & Schnieke, A. E. (1999). Analysis of telomere lengths in cloned sheep. Nature, 399(6734), 316–317.

    Article  Google Scholar 

  • Shinagawa, T., Takagi, T., Tsukamoto, D., Tomaru, C., Huynh, L. M., Sivaraman, P., Kumarevel, T., Inoue, K., Nakato, R., Katou, Y., Sado, T., Takahashi, S., Ogura, A., Shirahige, K., & Ishii, S. (2014). Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell, 14(2), 217–227.

    Article  Google Scholar 

  • Simmet, K., Wolf, E., & Zakhartchenko, V. (2021). Manipulating the epigenome in nuclear transfer cloning: Where, when and how. International Journal of Molecular Sciences, 22(1), 236.

    Article  Google Scholar 

  • Sims, M., & First, N. L. (1994). Production of calves by transfer of nuclei from cultured inner cell mass cells. Proceedings of the National Academy of Sciences of the United States of America, 91(13), 6143–6147.

    Article  Google Scholar 

  • Sinclair, K. D., Corr, S. A., Gutierrez, C. G., Fisher, P. A., Lee, J. H., Rathbone, A. J., Choi, I., Campbell, K. H. S., & Gardner, D. S. (2016). Healthy ageing of cloned sheep. Nature Communications, 7(1), 12359.

    Article  Google Scholar 

  • Singer, P. (1975). Animal liberation. Review Press.

    Google Scholar 

  • Sinha, N., Patil, S., Kesigan, U., Chaitanya, S., Panigrahy, S., & Tandon, G. (2019). Ethical concerns in animal cloning: Possible risks and assessment. Global Bioethics Enquiry Journal, 7, 128–135.

    Article  Google Scholar 

  • Smith, L. C., & Wilmut, I. (1989). Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryos after nuclear transplantation. Biology of Reproduction, 40(5), 1027–1035.

    Article  Google Scholar 

  • Smith, L. C., Suzuki, J., Jr., Goff, A. K., Filion, F., Therrien, J., Murphy, B. D., Kohan-Ghadr, H. R., Lefebvre, R., Brisville, A. C., Buczinski, S., Fecteau, G., Perecin, F., & Meirelles, F. V. (2012). Developmental and epigenetic anomalies in cloned cattle. Reproduction in Domestic Animals, 47(Suppl 4), 107–114.

    Article  Google Scholar 

  • Smith, L. C., Therrien, J., Filion, F., Bressan, F., & Meirelles, F. V. (2015). Epigenetic consequences of artificial reproductive technologies to the bovine imprinted genes SNRPN, H19/IGF2, and IGF2R. Frontiers in Genetics, 6, 58. https://doi.org/10.3389/fgene.2015.00058

    Article  Google Scholar 

  • Solter, D. (1999). Cloning claims challenged. Nature, 399(6731), 13.

    Article  Google Scholar 

  • Soto, D. A., & Ross, P. J. (2016). Pluripotent stem cells and livestock genetic engineering. Transgenic Research, 25(3), 289–306.

    Article  Google Scholar 

  • Spemann, H. (1938). Embryonic development and induction. Hafner Publishing Co.

    Book  Google Scholar 

  • Steinborn, R., Schinogl, P., Zakhartchenko, V., Achmann, R., Schernthaner, W., Stojkovic, M., Wolf, E., Müller, M., & Brem, G. (2000). Mitochondrial DNA heteroplasmy in cloned cattle produced by fetal and adult cell cloning. Nature Genetics, 25(3), 255–257.

    Article  Google Scholar 

  • Stice, S. L., & Robl, J. M. (1988). Nuclear reprogramming in nuclear transplant rabbit embryos. Biology of Reproduction, 39(3), 657–664.

    Article  Google Scholar 

  • Sun, Z., Wang, M., Han, S., Ma, S., Zou, Z., Ding, F., Li, X., Li, L., Tang, B., Wang, H., Li, N., Che, H., & Dai, Y. (2018). Production of hypoallergenic milk from DNA-free beta-lactoglobulin (BLG) gene knockout cow using zinc-finger nucleases mRNA. Scientific Reports, 8(1), 15430.

    Article  Google Scholar 

  • Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H. S., Sritanaudomchai, H., Masterson, K., Larson, J., Eaton, D., Sadler-Fredd, K., Battaglia, D., Lee, D., Wu, D., Jensen, J., Patton, P., Gokhale, S., Stouffer, R. L., Wolf, D., & Mitalipov, S. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153(6), 1228–1238.

    Article  Google Scholar 

  • Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.

    Article  Google Scholar 

  • Tanihara, F., Takemoto, T., Kitagawa, E., Rao, S., Do, L. T., Onishi, A., Yamashita, Y., Kosugi, C., Suzuki, H., Sembon, S., Suzuki, S., Nakai, M., Hashimoto, M., Yasue, A., Matsuhisa, M., Noji, S., Fujimura, T., Fuchimoto, D., & Otoi, T. (2016). Somatic cell reprogramming-free generation of genetically modified pigs. Science Advances, 2(9), e1600803.

    Article  Google Scholar 

  • Tanne, J. H. (2008). FDA approves use of cloned animals for food. BMJ, 336(7637), 176.

    Article  Google Scholar 

  • Tecirlioglu, R. T., Cooney, M. A., Lewis, I. M., Korfiatis, N. A., Hodgson, R., Ruddock, N. T., Vajta, G., Downie, S., Trounson, A. O., Holland, M. K., & French, A. J. (2005). Comparison of two approaches to nuclear transfer in the bovine: Hand-made cloning with modifications and the conventional nuclear transfer technique. Reproduction, Fertility, and Development, 17(5), 573–585.

    Article  Google Scholar 

  • Thomas, K. R., & Capecchi, M. R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 51(3), 503–512.

    Article  Google Scholar 

  • Trounson, A. O. (2006). Future and applications of cloning. Methods in Molecular Biology, 348, 319–332.

    Article  Google Scholar 

  • Tsunoda, Y., Yasui, T., Shioda, Y., Nakamura, K., Uchida, T., & Sugie, T. (1987). Full-term development of mouse blastomere nuclei transplanted into enucleated two-cell embryos. The Journal of Experimental Zoology, 242(2), 147–151.

    Article  Google Scholar 

  • Vajta, G., Lewis, I. M., Trounson, A. O., Purup, S., Maddox-Hyttel, P., Schmidt, M., Pedersen, H. G., Greve, T., & Callesen, H. (2003). Handmade somatic cell cloning in cattle: Analysis of factors contributing to high efficiency in vitro. Biology of Reproduction, 68(2), 571–578.

    Article  Google Scholar 

  • Vajta, G., Lewis, I. M., & Tecirlioglu, R. T. (2006). Handmade somatic cell cloning in cattle. Methods in Molecular Biology, 348, 183–196.

    Article  Google Scholar 

  • Vajta, G., Korösi, T., Du, Y., Nakata, K., Ieda, S., Kuwayama, M., & Nagy, Z. P. (2008). The Well-of-the-Well system: An efficient approach to improve embryo development. Reproductive Biomedicine Online, 17(1), 73–81.

    Article  Google Scholar 

  • Van Der Berg, J. P., Kleter, G. A., Battaglia, E., Groenen, M. A. M., & Kok, E. J. (2020). Developments in genetic modification of cattle and implications for regulation, safety and traceability. Frontiers of Agricultural Science and Engineering, 7(2), 136–147.

    Article  Google Scholar 

  • Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., & Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature, 394(6691), 369–374.

    Article  Google Scholar 

  • Wakayama, T., Tateno, H., Mombaerts, P., & Yanagimachi, R. (2000). Nuclear transfer into mouse zygotes. Nature Genetics, 24(2), 108–109.

    Article  Google Scholar 

  • Wakayama, S., Ohta, H., Hikichi, T., Mizutani, E., Iwaki, T., Kanagawa, O., & Wakayama, T. (2008). Production of healthy cloned mice from bodies frozen at -20 degrees C for 16 years. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17318–17322.

    Article  Google Scholar 

  • Walters, E. M., Wells, K. D., Bryda, E. C., Schommer, S., & Prather, R. S. (2017). Swine models, genomic tools and services to enhance our understanding of human health and diseases. Lab Animal (NY), 46(4), 167–172.

    Article  Google Scholar 

  • Wang, X., Qu, J., Li, J., He, H., Liu, Z., & Huan, Y. (2020). Epigenetic reprogramming during somatic cell nuclear transfer: Recent progress and future directions [Review]. Frontiers in Genetics, 11(205), 1–13.

    Google Scholar 

  • Watanabe, S. (2013). Effect of calf death loss on cloned cattle herd derived from somatic cell nuclear transfer: Clones with congenital defects would be removed by the death loss. Animal Science Journal, 84(9), 631–638.

    Article  Google Scholar 

  • Watanabe, S., & Nagai, T. (2008). Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan. The Journal of Reproduction and Development, 54(1), 6–17.

    Article  Google Scholar 

  • Weaver, L. D., Galland, J., Sosnik, U., & Cowen, P. (1986). Factors affecting embryo transfer success in recipient heifers under field conditions. Journal of Dairy Science, 69(10), 2711–2717.

    Article  Google Scholar 

  • Weismann, A. (1892). Das Kleimplasma. Eine Theorie de Verebung. Fischer.

    Google Scholar 

  • Wells, D. N. (2005). Animal cloning: Problems and prospects. Revue Scientifique et Technique, 24(1), 251–264.

    Article  Google Scholar 

  • Wen, D., Noh, K. M., Goldberg, A. D., Allis, C. D., Rosenwaks, Z., Rafii, S., & Banaszynski, L. A. (2014). Genome editing a mouse locus encoding a variant histone, H3.3B, to report on its expression in live animals. Genesis, 52(12), 959–966.

    Article  Google Scholar 

  • Whitworth, K. M., & Prather, R. S. (2010). Somatic cell nuclear transfer efficiency: How can it be improved through nuclear remodeling and reprogramming? Molecular Reproduction and Development, 77(12), 1001–1015.

    Article  Google Scholar 

  • Willadsen, S. M. (1986). Nuclear transplantation in sheep embryos. Nature, 320(6057), 63–65.

    Article  Google Scholar 

  • Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.

    Article  Google Scholar 

  • Wilmut, I., Bai, Y., & Taylor, J. (2015). Somatic cell nuclear transfer: Origins, the present position and future opportunities. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1680), 20140366.

    Article  Google Scholar 

  • Woolwine, P. (2013). hiPSCs: Reprogramming towards cell-based therapies. Open Journal of Regenerative Medicine, 2, 61–73.

    Article  Google Scholar 

  • Wrenzycki, C., Wells, D., Herrmann, D., Miller, A., Oliver, J., Tervit, R., & Niemann, H. (2001). Nuclear transfer protocol affects messenger RNA expression patterns in cloned bovine blastocysts. Biology of Reproduction, 65(1), 309–317.

    Article  Google Scholar 

  • Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell, 27(4), 523–531.

    Article  Google Scholar 

  • Yan, S., Tu, Z., Liu, Z., Fan, N., Yang, H., Yang, S., Yang, W., Zhao, Y., Ouyang, Z., Lai, C., Yang, H., Li, L., Liu, Q., Shi, H., Xu, G., Zhao, H., Wei, H., Pei, Z., Li, S., Lai, L., & Li, X.-J. (2018). A Huntingtin Knockin Pig model recapitulates features of selective neurodegeneration in Huntington’s disease. Cell, 173(4), 989–1002.e1013.

    Article  Google Scholar 

  • Yang, X., Tian, X. C., Kubota, C., Page, R., Xu, J., Cibelli, J., & Seidel, G. (2007). Risk assessment of meat and milk from cloned animals. Nature Biotechnology, 25(1), 77–83.

    Article  Google Scholar 

  • Yokota, T., Matsuzaki, Y., Miyazawa, K., Zindy, F., Roussel, M. F., & Sakai, T. (2004). Histone deacetylase inhibitors activate INK4d gene through Sp1 site in its promoter. Oncogene, 23(31), 5340–5349.

    Article  Google Scholar 

  • Yoshida, K., Muratani, M., Araki, H., Miura, F., Suzuki, T., Dohmae, N., Katou, Y., Shirahige, K., Ito, T., & Ishii, S. (2018). Mapping of histone-binding sites in histone replacement-completed spermatozoa. Nature Communications, 9(1), 3885.

    Article  Google Scholar 

  • Young, L. E., Fernandes, K., McEvoy, T. G., Butterwith, S. C., Gutierrez, C. G., Carolan, C., Broadbent, P. J., Robinson, J. J., Wilmut, I., & Sinclair, K. D. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nature Genetics, 27(2), 153–154.

    Article  Google Scholar 

  • Yu, L., Wei, Y., Sun, H.-X., Mahdi, A. K., Pinzon Arteaga, C. A., Sakurai, M., Schmitz, D. A., Zheng, C., Ballard, E. D., Li, J., Tanaka, N., Kohara, A., Okamura, D., Mutto, A. A., Gu, Y., Ross, P. J., & Wu, J. (2021). Derivation of intermediate pluripotent stem cells amenable to primordial germ cell specification. Cell Stem Cell, 28(3), 550–567.e512.

    Article  Google Scholar 

  • Zhang, Y., Wang, Q., Liu, K., Gao, E., Guan, H., & Hou, J. (2018). Treatment of donor cells with recombinant KDM4D protein improves preimplantation development of cloned ovine embryos. Cytotechnology, 70(5), 1469–1477.

    Article  Google Scholar 

  • Zhang, P. Y., Fan, Y., Tan, T., & Yu, Y. (2020). Generation of artificial gamete and embryo from stem cells in reproductive medicine. Frontiers in Bioengineering and Biotechnology, 8, 781.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. French .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

French, A.J., Trounson, A. (2023). Animal Cloning: Scientific Endeavour, Perception and Ethical Debate. In: Valdés, E., Lecaros, J.A. (eds) Handbook of Bioethical Decisions. Volume I. Collaborative Bioethics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-031-29451-8_34

Download citation

Publish with us

Policies and ethics