Skip to main content
Log in

A model for the structure of point-like fermions: Qualitative features and physical description

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A model for the structure of point-like fermions as tightly bound composite states is described. The model is based upon the premise that electromagnetism is the only fundamental interaction. The fundamental entity of the model is an object called the vorton. Vortons are semiclassical monopole configurations of electromagnetic charge and field, constructed to satisfy Maxwell's equations. Vortons carry topological charge and one unit each of two different kinds of angular momenta, and are placed in magnetically bound pair states having angular momentum l=1/2. The topological charge prevents the mutual annihilation of the vorton pair. The helicity eigenstates of the vortons' intrinsic angular momenta form the basis for a set of internal quantum numbers for the pair which distinguish the different (point-like) pair states. Sixteen fourcomponent spinor states, eight leptonic and eight hadronic, are obtained. Eleven of these are identified with the quantum numbers of the experimentally known particles: e, ve, μ, vμ, τ, vτ; p, n, Λ, Λc, and b. Thus one new heavy lepton with its neutrino and three new quark states are predicted. Some possibilities for the extension of this model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Fryberger,Hadronic Journal 4, 1844 (1981).

    Google Scholar 

  2. E. Amaldi,Old and New Problems in Elementary Particles, G. Puppi, ed. (Academic Press, New York and London, 1968), pp. 1–61.

    Google Scholar 

  3. P. H. Eberhard, R. R. Ross, L. W. Alvarez, and R. D. Watt,Phys. Rev. D 4, 3260 (1971); P. Eberhard, LBL-4289, Invited Talk at the Meeting of the Division of Particles and Fields, Seattle, Washington (August 1975).

    Google Scholar 

  4. D. M. Stevens,Magnetic Monopoles: An Updated Bibliography, Virginia Polytechnic Institute and State University Publication VPI-EPP-73-5 (October 15, 1973).

  5. L. W. Jones,Rev. Mod. Phys. 49, 717 (1977).

    Google Scholar 

  6. P. Goddard and D. I. Olive,Rep. Prog. Phys. 41, 1360 (1978).

    Google Scholar 

  7. P. A. M. Dirac,Proc. R. Soc. London A 133, 60 (1931);Phys. Rev. 74, 817 (1948).

    Google Scholar 

  8. H. Poincaré,Compt. Rend. 123, 530 (1896).

    Google Scholar 

  9. M. N. Saha,Indian J. Phys. 10, 145 (1936);Phys. Rev. 75, 1968 (1949); H. A. Wilson,Phys. Rev. 75, 309 (1949); A. S. Goldhaber,Phys. Rev. Lett. 140, B1407 (1965).

    Google Scholar 

  10. R. V. Tevikyan,Sov. Phys., JETP 23, 606 (1966); J. Schwinger,Phys. Rev. 173, 1536 (1968); D. Zwanziger,Phys. Rev. 176, 1480 and 1489 (1968).

    Google Scholar 

  11. J. Schwinger,Science 165, 757 (1969).

    Google Scholar 

  12. J. Schwinger,Particles, Sources and Fields (Addison-Wesley, Reading, Massachusetts, 1970), p. 251.

    Google Scholar 

  13. M. Y. Han and L. C. Biedenharn,Phys. Rev. Lett. 24, 118 (1970).

    Google Scholar 

  14. A. O. Barut,Proceedings of the Second Coral Cables Conference on Fundamental Interactions (Gordon and Breach, New York, 1970), pp. 199–220;Phys. Rev. D 3, 1747 (1971);Topics in Modern Physics, A Tribute to E. U. Condon (Colorado University Press, Boulder, Colorado, 1971), pp. 15–45;Acta Phys. Austr., Suppl. XI (Springer-Verlag, 1973), pp. 565–595.

    Google Scholar 

  15. G. 't Hooft,Nucl. Phys. B 79, 276 (1974).

    Google Scholar 

  16. A. M. Polyakov,Zh. Eksp. Theor. Fiz. Pis'ma Red. 20, 430 (1974) [JETP Lett. 20, 194 (1974)].

    Google Scholar 

  17. R. P. Feynman,Phys. Rev. Lett. 23, 1415 (1969).

    Google Scholar 

  18. G. Y. Rainich,Trans. Am. Math. Soc. 27, 106 (1925).

    Google Scholar 

  19. J. A. Stratton,Electromagnetic Theory (McGraw-Hill, New York, 1941), Chapter 1.

    Google Scholar 

  20. N. Cabibbo and E. Ferrari,Nuovo Cimento 123, 1147 (1962).

    Google Scholar 

  21. M. Y. Han and L. C. Biedenharn,Nuovo Cimento 2A, 544 (1971).

    Google Scholar 

  22. E. H. Kerner,J. Math. Phys. 11, 39 (1970); Yu. D. Usachev,Fiz. Elem. Chastist At. Yadra 4, 225 (1973) [Sov. J. Part. Nucl. 4, 94 (1973)]; W. B. Campbell, “Charge-Monopole Scattering: A Covariant Perturbation Theory,” Preprint, Behlen Laboratory of Physics, Department of Physics and Astronomy, University of Nebraska, 1976 (unpublished).

    Google Scholar 

  23. L. I. Schiff,Quantum Mechanics (McGraw-Hill, New York, 1955), p. 104.

    Google Scholar 

  24. J. Goldstone,Nuovo Cimento 19, 154 (1961); J. Goldstone, A. Salam and S. Weinberg,Phys. Rev. 127, 965 (1962).

    Google Scholar 

  25. P. W. Higgs,Phys. Rev. 145, 1156 (1966); T. W. B. Kibble,Phys. Rev. 155, 1554 (1967); G. Guralnik, C. R. Hagen, and T. W. B. Kibble,Phys. Rev. Lett. 13, 585 (1964); F. Englert and R. Brout,Phys. Rev. Lett. 13, 321 (1964).

    Google Scholar 

  26. M. B. Voloshin and L. B. Okun,Zh. Eksp. Teor. Fiz. Pis'ma Red. 28, 156 (1978) [JETP Lett. 28, 145 (1978)]; L. B. Okun and Ya. B. Zeldovich,Phys. Lett. B 78, 597 (1978); A. Yu. Ingnatiev, V. A. Kuzmin, and M. E. Shaposhnikov,Phys. Lett. 84B, 315 (1979).

    Google Scholar 

  27. L. Davis, Jr., A. S. Goldhaber, and M. N. Nieto,Phys. Rev. Lett. 35, 1402 (1975); G. V. Chibisov,Usp. Phys. Nauk 119, 551 (1976) [Sov. Phys. Usp. 19, 624 (1976)].

    Google Scholar 

  28. P. A. M. Dirac,Ann. Math. 37, 429 (1936).

    Google Scholar 

  29. Y. Murai,Prog. Theor. Phys. (Kyoto) 9, 147 (1953).

    Google Scholar 

  30. H. Hopf,Math. Ann. 104, 637 (1931);Fundam. Math. 25, 427 (1935).

    Google Scholar 

  31. P. M. Morse and H. Feshbach,Methods of Theoretical Physics (McGraw-Hill, 1953), p. 666.

  32. L. D. Landau, inNiels Bohr and the Development of Physics, W. Pauli, ed. (Pergamon, London, 1955), p. 52; L. Landau and I. Pomeronchuck,Dokl. Akad. Nauk SSSR 102, 489 (1955); L. D. Landau, A. A. Abrikosov, and I. Halatnikov,Nuovo Cimento Suppl. 3, 80 (1956).31

    Google Scholar 

  33. D. Fryberger,Phys. Rev. D 20, 952 (1979);24, 979 (1981).

    Google Scholar 

  34. D. Fryberger,Nuovo Cimento Lett. 28, 313 (1980).

    Google Scholar 

  35. B. S. DeWitt,Phys. Rev. Lett. 13, 114 (1964); I. B. Khriplovich,Yad. Fiz. 3, 375 (1966) [Sov. J. Nucl. Phys. 3, 415 (1966)]; A. Salam and J. Strathdee,Lett. Nuovo Cimento 4, 101 (1970); C. J. Isham, A. Salam, and J. Strathdee,Phys. Rev. D 3, 1805 (1971);Phys. Lett. 35B, 585 (1971);Phys. Rev. D 5, 2548 (1972); G. Rosen,Phys. Rev. D 4, 275 (1971); H. Franchiotti, C. A. Garcia Canal, H. Girotti, and H. Vucetich,Nucl. Phys. B 34, 307 (1971);Lett. Nuovo Cimento 2, 1001 (1971); M. A. Markov,Zh. Eksp. Theor. Fiz. 64, 1105 (1973) [Sov. Phys. JETP 37, 561 (1973)].

    Google Scholar 

  36. J. Schwinger, “On Angular Momentum,”Quantum Theory of Angular Momentum, L. C. Biedenharn and H. VanDam, eds. (Academic Press, New York and London, 1965), p. 229.

    Google Scholar 

  37. A. R. Edmonds,Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957), p. 13.

    Google Scholar 

  38. I. M. Gel'fand, R. A. Minlos, and Z. Ya. Shapiro,Representations of the Rotation and Lorentz Groups and Their Applications (Pergamon Press, New York, 1963), p. 81.

    Google Scholar 

  39. A. R. Edmonds,Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957), p. 65; D. M. Brink and G. R. Satchler,Angular Momentum, 2nd edn. (Clarendon Press, Oxford, 1968), p. 25.

    Google Scholar 

  40. A. J. Hanson and T. Regge,Ann. Phys. 87, 498 (1974).

    Google Scholar 

  41. E. P. Wigner,Ann. Math. 40, 149 (1939).

    Google Scholar 

  42. A. R. Edmonds,Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957), p. 59.

    Google Scholar 

  43. W. Pauli,Helv. Phys. Acta 12, 147 (1939).

    Google Scholar 

  44. M. L. Whippman,Am. J. Phys. 34, 656 (1966).

    Google Scholar 

  45. J. M. Blatt and V. W. Weisskopf,Theoretical Nuclear Physics (Wiley, New York and London, 1952), p. 783.

    Google Scholar 

  46. C. van Winter,Ann. Phys. 47, 232 (1968).

    Google Scholar 

  47. A. R. Edmonds,Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957), p. 55.

    Google Scholar 

  48. A. R. Edmonds,Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957), p. 56.

    Google Scholar 

  49. M. E. Rose,Relativistic Electron Theory (Wiley, New York, 1961), p. 16.

    Google Scholar 

  50. E. P. Wigner,Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York and London, 1959), p. 230.

    Google Scholar 

  51. S. M. Bilenky and B. Pontecorvo,Phys. Lett. 61B, 248 (1976); S. Eliezer and A. R. Swift,Nucl. Phys. B 105, 45 (1976); H. Fritsch and P. Minkowski,Phys. Lett. 62B, 72 (1976); P. D. Mannheim,Phys. Rev. D 22, 1729 (1980).

    Google Scholar 

  52. P. A. Carruthers,Spin and Isospin in Particle Physics (Gordon and Breach, New York, 1971), p. 4.

    Google Scholar 

  53. D. Finkelstein and C. W. Misner,Ann. Phys. 6, 230 (1959); D. Finkelstein,J. Math. Phys. 7, 1218 (1966); H. C. Tze and Z. E. Ezawa,Phys. Rev. D 4, 1006 (1976).

    Google Scholar 

  54. M. Jacob and G. C. Wick,Ann. Phys. (N.Y.) 7, 404 (1959).

    Google Scholar 

  55. S. S. Schweber,An Introduction to Relativistic Quantum Field Theory (Harper and Row, New York, 1961), p. 113.

    Google Scholar 

  56. E. P. Wigner,Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York and London, 1959), p. 217.

    Google Scholar 

  57. E. Corinaldesi and F. Strocchi,Relativistic Wave Mechanics (North-Holland, Amsterdam, 1963), p. 121.

    Google Scholar 

  58. E. Cartan,Bull. Soc. Math. Fr. 41, 53 (1913);The Theory of Spinors (The MIT Press, Cambridge, Massachusetts, 1966), p. 41.

    Google Scholar 

  59. W. Pauli,Phys. Rev. 58, 716 (1940).

    Google Scholar 

  60. H. C. Brinkman,Applications of Spinor Invariants in Atomic Physics (North-Holland, Amsterdam, 1956), p. 29.

    Google Scholar 

  61. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), Chapter 7.

    Google Scholar 

  62. N. F. Ramsey,Phys. Rev. Lett. 109, 225 (1958).

    Google Scholar 

  63. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), p. 30.

    Google Scholar 

  64. J. J. Sakurai,Advanced Quantum Mechanics (Addison-Wesley, Reading, Massachusetts, 1967), p. 174.

    Google Scholar 

  65. H. Sato,Phys. Rev. Lett. 45, 1997 (1980).

    Google Scholar 

  66. J. C. Pati and A. Salam,Phys. Rev. D 8, 1240 (1973);Phys. Rev. Lett. 31, 661 (1973); H. Georgi and S. L. Glashow,Phys. Rev. Lett. 32, 438 (1974); H. Georgi, H. R. Quinn, and S. Weinberg,Phys. Rev. Lett 33, 451 (1974); H. Fritzsch and P. Minkowski,Ann. Phys. 93, 193 (1975).

    Google Scholar 

  67. J. J. J. Kokkedee,The Quark Model (W. A. Benjamin, New York, 1969), p. 15.

    Google Scholar 

  68. S. Weinberg,Phys. Lett. 9, 357 (1964);Phys. Rev. B 135, 1049 (1964);138, 988 (1964);Lectures in Particles and Field Theory, S. Dreser and K. Ford, eds. (Prentice-Hall, Englewood Cliffs, New Jersey, 1965), p. 988.

    Google Scholar 

  69. Y. Nambu,Proceedings of the 1960 Annual Conference on High-Energy Physics at Rochester (published by University of Rochester, distributed by Interscience, New York, 1960); Y. Nambu and G. Jona-Lasinio,Phys. Rev. 122, 345 (1961);124, 246 (1961).

    Google Scholar 

  70. V. A. Lyubimov, E. G. Novikov, V. Z. Nozik, E. F. Tretyakov, and V. S. Kozik,Phys. Lett. 94B, 266 (1980); F. Reines, H. W. Sobel, and E. Pasierb,Phys. Rev. Lett. 45, 1307 (1980).

    Google Scholar 

  71. J. Schwinger,Phys. Rev. 151, 1048, 1055 (1966).

    Google Scholar 

  72. P. I. Fomin,Fiz. Elem. Chastits At. Yadra 7, 687 (1976) [Sov. J. Part. Nucl. 7, 269 (1976)].

    Google Scholar 

  73. E. A. Uehling,Phys. Rev. 48, 55 (1935).

    Google Scholar 

  74. K.-N. Huang,Phys. Rev. A,14, 1311 (1976).

    Google Scholar 

  75. E. H. Wichmann and N. M. Kroll,Phys. Rev. 101, 843 (1956).

    Google Scholar 

  76. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), p. 159.

    Google Scholar 

  77. J. D. Bjorken and S. D. Drell,Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964), Appendix A.

    Google Scholar 

  78. J. D. Bjorken and S. D. Drell,Relativistic Quantum Fields (McGraw-Hill, New York, 1965), p. 357.

    Google Scholar 

  79. G. C. Wick,Phys. Rev. 96, 1124 (1954).

    Google Scholar 

  80. L. Landau and E. Lifshitz,The Classical Theory of Fields (Addison-Wesley, Reading, Massachusetts, 1951), p. 129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Department of Energy, contract DE-AC03-76SF00515.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fryberger, D. A model for the structure of point-like fermions: Qualitative features and physical description. Found Phys 13, 1059–1100 (1983). https://doi.org/10.1007/BF00728138

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00728138

Keywords

Navigation