Skip to main content
Log in

A Unified Mathematical Formalism for the Dirac Formulation of Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We revise the mathematical implementation of the Dirac formulation of quantum mechanics, presenting a rigorous framework that unifies most of versions of this implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. R. Marlow, J. Math. Phys. 6, 919 (1965).

    Google Scholar 

  2. J. E. Roberts, J. Math. Phys. 7, 1097 (1966); Commun. Math. Phys. 3, 98 (1966).

    Google Scholar 

  3. J. P. Antoine, J. Math. Phys. 10, 53 (1969); 10, 2276 (1969).

    Google Scholar 

  4. A. Bohm, Boulder Lectures on Theoretical Physics 1966, Vol. 9A (Gordon &;;; Breach, New York, 1967).

    Google Scholar 

  5. O. Melsheimer, J. Math. Phys. 15, 902 (1974); 15, 917 (1974).

    Google Scholar 

  6. S. J. L. Eijndhoven and J. de Graaf, A Mathematical Introduction to Dirac's Formalism (North-Holland, Amsterdam, 1986).

  7. I. M. Gelfand and G. E. Shilov, Generalized Functions: Spaces of Fundamental and Generalized Functions (Academic, New York, 1968).

    Google Scholar 

  8. D. Tjostheim, J. Math. Phys. 16, 766 (1975).

    Google Scholar 

  9. K. Maurin, General Eigenfunction Expansions and Unitary Representation of Topological Groups (Polish Scientific Publishers, Warszawa, 1968).

    Google Scholar 

  10. J. P. Antoine, “Quantum Mechanics Beyond Hilbert Space,” in Irreversibility and Causality, A. Bohm, H. D. Doebner, and P. Kielanowski, eds. (Springer Lecture Notes in Physics 504) (Springer, Berlin, 1998).

    Google Scholar 

  11. C. Foias, Acta Sci. Math. 20, 117 (1959); Compt. Rend. 248, 904 (1959); Compt. Rend. 248, 1105 (1959); Rev. Math. Pures Appl. Acad. Roumaine 7, 241 (1962).

    Google Scholar 

  12. H. H. Schaeffer, Topological Vector Spaces (MacMillan, New York, 1977).

    Google Scholar 

  13. H. Baumgärtel and M. Wollenberg, Mathematical Scattering Theory (Operator Theory: Advances and Applications 9) (Birkhauser, Basel, 1983).

    Google Scholar 

  14. D. R. Yafaev, Mathematical Scattering Theory. General Theory (Translations of Mathematical Monographs 105) (American Mathematical Society, Providence, 1992).

    Google Scholar 

  15. J. S. Howland, “Banach space techniques in the perturbation theory of self-adjoint operators with continous spectra,” J. Math. Anal. and Appl. 20, 22–47 (1967).

    Google Scholar 

  16. P. A. Retjo, “On gentle perturbations I and II,” Math. Anal. Appl. 17, 453–462 (1967); 20, 145–187 (1967).

    Google Scholar 

  17. J. S. Howland, J. Func. Anal. 2, 1 (1968).

    Google Scholar 

  18. T. Kato and S. T. Kuroda, in Functional Analysis and Related Fields, F. E. Browder, ed. (Springer, Berlin and New York, 1970).

    Google Scholar 

  19. I. M. Gelfand and N. Y. Vilenkin, Generalized Functions: Applications of Harmonic Analysis (Academic, New York, 1964).

    Google Scholar 

  20. I. Antoniou and Z. Suchanecki, “Densities of singular measures and generalized spectral decompositions,” in Generalized Functions, Operator Theory and Dynamical Systems, I. Antoniou and G. Lummer, eds. (Chapmann and Hall/CRC, London, 1999).

    Google Scholar 

  21. A. Bohm and M. Gadella, Dirac Kets, Gamow Vectors and Gel'fand Triplets, (Springer Lecture Notes in Physics 248) (Springer, New York, 1989).

    Google Scholar 

  22. D. Fredricks, Rep. Math. Phys. 8, 277 (1975).

    Google Scholar 

  23. M. S. Birman and M. Z. Solomjak, Spectral Theory of Self Adjoint Operators in Hilbert Space (Reidel, Boston, 1987).

    Google Scholar 

  24. A. Bohm, Quantum Mechanics: Fundations and Applications (Springer, New York, 1994).

    Google Scholar 

  25. A. Bohm, Lett. Math. Phys. 3, 455 (1978); J. Math. Phys. 22, 2813 (1981).

    Google Scholar 

  26. I. Prigogine, From Being to Becoming (Freeman, New York, 1980).

    Google Scholar 

  27. I. Antoniou and I. Prigogine, Physica 192A, 443 (1993).

    Google Scholar 

  28. I. Antoniou and S. Tasaki, Physica A 190, 303–329 (1992); Int. J. Quant. Chem. 46, 424–474 (1993).

    Google Scholar 

  29. W. O. Amrein, J. Jauch, and B. Sinha, Scattering Theory in Quantum Mechanics (Benjamin, Reading, 1977).

    Google Scholar 

  30. M. Reed and B. Simon, Functional Analysis (Academic, New York, 1972).

    Google Scholar 

  31. H. Jarchow, Locally Convex Spaces (Teubner, Stuttgart, 1981).

    Google Scholar 

  32. J. Horváth, Topological Vector Space and Distributions (Addison–Wesley, Reading, 1966).

    Google Scholar 

  33. J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).

    Google Scholar 

  34. P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon, Oxford, 1958).

    Google Scholar 

  35. G. Bachman and L. Narici, Functional Analysis (Academic, New York, 1966).

    Google Scholar 

  36. G. E. Shilov and B. L. Gurevich, Integral, Measure, and Derivative: A Unified Approach (Prentice Hall, Englewood Cliffs, 1966).

    Google Scholar 

  37. B. Sz. Nagy, “Extensions of Linear Transformations in Hilbert Space Which Extends Beyond This Space,” Appendix to Functional Analysis by F. Riesz and B. Sz. Nagy (Ungar, New York, 1960).

    Google Scholar 

  38. L. Gårdin, Proc. Natl. Acad. Sci. USA 33, 331 (1947).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadella, M., Gómez, F. A Unified Mathematical Formalism for the Dirac Formulation of Quantum Mechanics. Foundations of Physics 32, 815–869 (2002). https://doi.org/10.1023/A:1016069311589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016069311589

Keywords

Navigation