Skip to main content
Log in

Genotype Components as Predictors of Phenotype in Model Gene Regulatory Networks

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Models of gene regulatory networks (GRN) have proven useful for understanding many aspects of the highly complex behavior of biological control networks. Randomly generated non-Boolean networks were used in experimental simulations to generate data on dynamic phenotypes as a function of several genotypic parameters. We found that predictive relationships between some phenotypes and quantitative genotypic parameters such as number of network genes, interaction density, and initial condition could be derived depending on the strength of the topological (positional) genotype on specific phenotypes. We quantitated the strength of the topological genotype effect (TGE) on a number of phenotypes in multi-gene networks. For phenotypes with a low influence of topological genotype, derived and empirical relationships using quantitative genotype parameters were accurate in phenotypic outcomes. We found a number of dynamic network properties, including oscillation behaviors, that were largely dependent on genotype topology, and for which no such general quantitative relationships were determinable. It remains to be determined if these results are applicable to biological gene regulatory networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akman OE, Watterson S, Parton A, Binns N, Millar AJ, Ghazal P (2012) Digital clocks: simple Boolean models can quantitatively describe circadian systems. J R Soc Interface 9:2365–2382

    Article  Google Scholar 

  • Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223:1–18

    Article  Google Scholar 

  • Aldana M, Balleza E, Kauffman S, Resendiz O (2007) Robustness and evolvability in genetic regulatory networks. J Theor Biol 245:433–448

    Article  Google Scholar 

  • Arda HE, Taubert S, MacNeil LT, Conine CC, Tsuda B, Van Gilst M, Sequerra R, Doucette-Stamm L, Yamamoto KR, Walhout AJM (2010) Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network. Mol Syst Biol. 11(6):367

    Article  Google Scholar 

  • Atkinson MR, Savageau MA, Myers JT, Ninfa AJ (2003) Development of genetic circuitry exhibiting toggle switch or oscillatory behavior in Escherichia coli. Cell 113:597–607

    Article  Google Scholar 

  • Bar-Or RL, Maya R, Segel LA, Alon U, Levine AJ, Oren M (2000) Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study. Proc Nat Acad Sci USA 97:11250–11255

    Article  Google Scholar 

  • Bornholdt S (2001) Modeling genetic networks and their evolution: a complex dynamical systems perspective. Biol Chem 382:1289–1299

    Article  Google Scholar 

  • Burda Z, Krzywicki A, Martin OC, Zagorski M (2010) Distribution of essential interactions in model gene regulatory networks under mutation-selection balance. Phys Rev E 82:011908

    Article  Google Scholar 

  • Burda Z, Krzywicki A, Martin OC, Zagorski M (2011) Motifs emerge from function in model gene regulatory networks. Proc Nat Acad Sci USA 108:17263–17268

    Article  Google Scholar 

  • Ciliberti S, Martin OC, Wagner A (2007) Innovation and robustness in complex regulatory gene networks. Proc Natl Acad Sci USA 21104:13591–13596

    Article  Google Scholar 

  • Daniels BC, Kim H, Moore D, Zhou S, Smith H, Karas B, Kauffman SA, Walker SI (2018) Logic and connectivity jointly determine criticality in biological gene regulatory networks. arXiv:1805.01447 [q-bio.MN]

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Article  Google Scholar 

  • Draghi J, Wagner GP (2009) The evolutionary dynamics of evolvability in a gene network model. J Evol Biol 22:599–611

    Article  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  Google Scholar 

  • Ettensohn CA (2009) Lessons from a gene regulatory network: echinoderm skeletogenesis provides insights into evolution, plasticity and morphogenesis. Development. 136:11–21

    Article  Google Scholar 

  • Friedlander T, Mayo AE, Tlusty T, Alon U (2013) Mutation rules and the evolution of sparseness and modularity in biological systems. PLoS ONE 8(8):e70444

    Article  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  Google Scholar 

  • Garfield DA, Runcie DE, Babbitt CC, Haygood R, Nielsen WJ, Wray GA (2013) The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network. PLoS Biol 11(10):e1001696

    Article  Google Scholar 

  • Halfon MS (2017) Perspectives on gene regulatory network evolution. Trends Genet 33:436–447. https://doi.org/10.1016/j.tig.2017.04.005

    Article  Google Scholar 

  • Hernaez M, Gevaert O (2018) Comparison of single gene and module-based methods for modeling gene regulatory networks. bioRxiv . https://doi.org/10.1101/307884

    Article  Google Scholar 

  • Hinman VF, Yankura KA, McCauley BS (2009) Evolution of gene regulatory network architectures: examples of subcircuit conservation and plasticity between classes of echinoderms. Biochim Biophys Acta 1789:326–332

    Article  Google Scholar 

  • Imani M, Braga-Neto U (2018) Gene regulatory network state estimation from arbitrary correlated measurements. Eur J Adv Signal Process 2018:22

    Article  Google Scholar 

  • Jiménez A, Cotterell J, Munteanu A, Sharpe J (2015) Dynamics of gene circuits shapes evolvability. Proc Natl Acad Sci USA 112:2103–2108

    Article  Google Scholar 

  • Kappler K, Edwards R, Glass L (2003) Dynamics in high-dimensional model gene networks. Signal Process 83:789–798

    Article  Google Scholar 

  • Karbalayghareh A, Braga-Neto U, Dougherty ER (2018) Intrinsically Bayesian robust classifier for single-cell gene expression trajectories in gene regulatory networks. BMC Syst Biol 12(Suppl 3):23. https://doi.org/10.1186/s12918-018-0549-y

    Article  Google Scholar 

  • Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22:437–467

    Article  Google Scholar 

  • Kauffman S, Peterson C, Samuelsson B, Troein C (2007) Genetic networks with canalyzing Boolean rules are always stable. Proc Natl Acad Sci 101:17102–17107

    Article  Google Scholar 

  • Leclerc RD (2008) Survival of the sparsest: robust gene networks are parsimonious. Mol Syst Biol 4:213

    Article  Google Scholar 

  • Li G, Rabitz H (2014) Analysis of gene network robustness based on saturated fixed point attractors. EURASIP J Bioinform Syst Biol 1:4

    Article  Google Scholar 

  • Likhoshvai VA, Fadeev SI, Kogai VV, Khlebodarova TM (2013) On the chaos in gene networks. J Bioinform Comput Biol 11(1):1340009

    Article  Google Scholar 

  • Lim WA, Lee CM, Tang C (2013) Design principles of regulatory networks: searching for the molecular algorithms of the cell. Mol Cell 49:202–212

    Article  Google Scholar 

  • Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M (2004) Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431:308–312

    Article  Google Scholar 

  • Lynch VJ, Leclerc RD, May G, Wagner GP (2011) Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat Genet 43:1154–1159

    Article  Google Scholar 

  • Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138:760–773

    Article  Google Scholar 

  • Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197:287–289

    Article  Google Scholar 

  • Mathworks (2015). MATLAB Version 8.6.0.267246 (R2015b). Natick, MA

  • Nelson DE, Ihekwaba AE, Elliott M, Johnson JR, Gibney CA, Foreman BE, Nelson G, See V, Horton CA, Spiller DG, Edwards SW, McDowell HP, Unitt JF, Sullivan E, Grimley R, Benson N, Broomhead D, Kell DB, White MR (2004) Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 306:704–708

    Article  Google Scholar 

  • Neph S, Stergachis AB, Reynolds A, Sandstrom R, Borenstein E, Stamatoyannopoulos JA (2012) Circuitry and dynamics of human transcription factor regulatory networks. Cell 150:1274–1286

    Article  Google Scholar 

  • Noman N, Monjo T, Moscato P, Iba H (2015) Evolving robust gene regulatory networks. PLoS ONE 10(1):e0116258

    Article  Google Scholar 

  • Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9:981–991

    Article  Google Scholar 

  • Payne JL, Wagner A (2013) Constraint and contingency in multifunctional gene regulatory circuits. PLoS Comput Biol 69(6):e1003071

    Article  Google Scholar 

  • Payne JL, Wagner A (2014) Latent phenotypes pervade gene regulatory circuits. BMC Syst Biol 30(8):64

    Article  Google Scholar 

  • Payne JL, Wagner A (2015) Function does not follow form in gene regulatory circuits. Sci Rep 5:13015

    Article  Google Scholar 

  • Payne JL, Moore JH, Wagner A (2014) Robustness, evolvability, and the logic of genetic regulation. Artif Life 20:111–126

    Article  Google Scholar 

  • Peter IS, Davidson EH (2017) Assessing regulatory information in developmental gene regulatory networks Proc. Natl Acad Sci 144:5862–5869

    Article  Google Scholar 

  • Peter IS, Faure E, Davidson EH (2012) Predictive computation of genomic logic processing functions in embryonic development. Proc Nat Acad Sci USA 109:16434–16442

    Article  Google Scholar 

  • Pinho R, Borenstein E, Feldman MW (2012) Most networks in Wagner’s model are cycling. PLoS ONE 7(4):e34285

    Article  Google Scholar 

  • Poignard C (2014) Inducing chaos in a gene regulatory network by coupling an oscillating dynamics with a hysteresis-type one. J Math Biol 69:335–368

    Article  Google Scholar 

  • Pomerening JR, Kim SY, Ferrell JE Jr (2005) Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122:565–578

    Article  Google Scholar 

  • Prill RJ, Iglesias PA, Levchenko A (2005) Dynamic properties of network motifs contribute to biological network organization. PLoS Biol 3(11):e343

    Article  Google Scholar 

  • Prud’homme B, Gompel N, Carroll SB (2007) Emerging principles of regulatory evolution. Proc Natl Acad Sci USA 104(Suppl 1):8605–8612

    Article  Google Scholar 

  • Sears KE, Maier JA, Rivas-Astroza M, Poe R, Zhong S, Kosog K, Marcot JD, Behringer RR, Cretekos CJ, Rasweiler JJ 4th, Rapti Z (2015) The relationship between gene network structure and expression variation among individuals and species. PLoS Genet 11(8):e1005398

    Article  Google Scholar 

  • Sevim V, Rikvold PA (2008) Chaotic gene regulatory networks can be robust against mutations and noise. J Theor Biol 253:323–332

    Article  Google Scholar 

  • Siegal ML, Promislow DEL, Bergman A (2007) Functional and evolutionary inference in gene networks: does topology matter? Genetica 129:83–103

    Article  Google Scholar 

  • Smolen P, Baxter DA, Byrne JH (2001) Modeling circadian oscillations with interlocking positive and negative feedback loops. J Neurosci 21:6644–6656

    Article  Google Scholar 

  • Solé RV, Valverde S (2006) Are network motifs the spandrels of cellular complexity? Trends Ecol Evol 21:419–422

    Article  Google Scholar 

  • Steiner CF (2012) Environmental noise, genetic diversity and the evolution of evolvability and robustness in model gene networks. PLoS ONE 7(12):e52204

    Article  Google Scholar 

  • Suzuki Y, Lu M, Ben-Jacob E, Onuchic JN (2016) Periodic, quasi-periodic and chaotic dynamics in simple gene elements with time delays. Sci Rep. 6:21037

    Article  Google Scholar 

  • Wagner A (2008) Robustness and evolvability: a paradox resolved. Proc Biol Sci 275:91–100

    Article  Google Scholar 

  • Wagner A (2011) The role of robustness in phenotypic adaptation and innovation. Proc Biol Sci 279:1249–1258

    Article  Google Scholar 

  • Zhang Z, Ye W, Qian Y, Zheng Z, Huang X, Hu G (2012) Chaotic Motifs in Gene Regulatory Networks. PLoS ONE 7(7):e39355

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant (#57657) from the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Garte.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garte, S., Albert, A. Genotype Components as Predictors of Phenotype in Model Gene Regulatory Networks. Acta Biotheor 67, 299–320 (2019). https://doi.org/10.1007/s10441-019-09350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-019-09350-2

Keywords

Navigation