Skip to main content
Log in

Quantum Mechanics and the Principle of Least Radix Economy

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it is used to derive the Schrödinger and Dirac equations and the breaking of the commutativity of spacetime geometry. The formulation provides an explanation of how determinism and random statistical behavior coexist in spacetime and a framework is developed that allows dynamical processes to be formulated in terms of chains of digits. These methods lead to a new (pre-geometrical) foundation for Lorentz transformations and special relativity. The Parker-Rhodes combinatorial hierarchy is encompassed within our approach and this leads to an estimate of the interaction strength of the electromagnetic and gravitational forces that agrees with the experimental values to an error of less than one thousandth. Finally, it is shown how the principle of least-radix economy naturally gives rise to Boltzmann’s principle of classical statistical thermodynamics. A new expression for a general (path-dependent) nonequilibrium entropy is proposed satisfying the Second Law of Thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wolfram, S.: A New Kind of Science. Wolfram Media Inc., Champaign (2002)

    MATH  Google Scholar 

  2. Fredkin, E.: Digital mechanics. Physica D 45, 254–270 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. McCauley, J.L.: Chaos, Dynamics and Fractals: An Algorithmic Approach to Deterministic Chaos. Cambridge University Press, New York (1993)

  4. A. M. Turing: Systems of Logic Based on Ordinals. Ph.D. Thesis, Princeton University, (1939)

  5. t’Hooft, G.: Quantum gravity as a dissipative deterministic system. Class. Quantam Gravity 16, 3263–3279 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Bastin, T., Kilmister, C.W.: Combinatorial Physics. World Scientific, Singapore (1995)

    MATH  Google Scholar 

  7. Parker-Rhodes, A.F.: The Theory of Indistinguishables. D. Reidel, Dordrecht (Holland) (1981)

    Book  MATH  Google Scholar 

  8. Noyes, H.P.: Bit-String Physics. World Scientific, Singapore (2001)

    MATH  Google Scholar 

  9. Kauffman, L.H.: Non-commutative worlds. New J. Phys. 6, 173 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  10. Kauffman, L.H., Noyes, H.P.: Discrete physics and the Dirac equation. Phys. Lett. A 218, 139–146 (1996)

    Article  ADS  Google Scholar 

  11. McCauley, J.L.: Chaotic dynamical systems as automata. Z. Naturforsch. A 42, 547–555 (1987)

    MathSciNet  Google Scholar 

  12. McCauley, J.L., Palmore, J.I.: Computable chaotic orbits. Phys. Lett. A 115, 433–436 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  13. Garcia-Morales, V.: Nonlocal and Global Dynamics of Cellular Automata: A Theoretical Computer Arithmetic for Real Maps, arXiv:1312.6534 [math-ph] (2013)

  14. Garcia-Morales, V.: Universal map for cellular automata. Phys. Lett. A 376, 2645–2657 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Garcia-Morales, V.: Symmetry analysis of cellular automata. Phys. Lett. A 377, 276–285 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Garcia-Morales, V.: Origin of complexity and conditional predictability in cellular automata. Phys. Rev. E 88, 042814 (2013)

    Article  ADS  Google Scholar 

  17. Garcia-Morales, V.: Universal Map for Substitution Systems, arXiv:1309.5254 [math-ph] (2013)

  18. Wigner, E.P.: The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 13, 1–14 (1960)

    Article  ADS  MATH  Google Scholar 

  19. Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. II, 3rd edn. Addison Wesley, Reading (1998)

    Google Scholar 

  20. Hurst, S.L.: Multiple-valued logic: its status and its future. IEEE Trans. Comput. C33, 1160–1179 (1984)

    Article  Google Scholar 

  21. Schroeder, M.: Number Theory in Science and Communication. Springer, Berlin (2009)

    MATH  Google Scholar 

  22. Dirac, P.A.M.: The Principles of Quantum Mechanics. Oxford University Press, Oxford (1988)

    Google Scholar 

  23. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1996)

    MATH  Google Scholar 

  24. Titchmarsh, E. C., Heath-Brown, D. R.: The Theory of the Riemann Zeta-function. Oxford University Press, Oxford, UK (1986), Eq. 2.1.7

  25. Dym, H., McKean, H.P.: Fourier Series and Integrals. Academic Press, London (1972)

    MATH  Google Scholar 

  26. Lanczos, C.: Linear Differential Operators. Van Nostrand, London (1961)

    MATH  Google Scholar 

  27. Heisenberg, W.: The Physical Principles of the Quantum Theory. Dover, New York (1949)

    Google Scholar 

  28. Niven, I.: Irrational Numbers. The Mathematical Association of America (Carus Mathematical Monographs No. 11). The Mathematical Association of America, Washington (1956)

    Google Scholar 

  29. Bohm, D.: Quantum Theory. Dover, New York (1979)

    Google Scholar 

  30. Tanner, G., Richter, K., Rost, J.M.: The theory of two-electron atoms: between ground state and complete fragmentation. Rev. Mod. Phys. 72, 497 (2000)

    Article  ADS  Google Scholar 

  31. Gutzwiller, M.C.: Chaos in Classical and Quantum Mechanics. Springer, New York (1990)

    Book  MATH  Google Scholar 

  32. Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (1959)

    MATH  Google Scholar 

  33. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1950)

    Google Scholar 

  34. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover, New York (1961)

    MATH  Google Scholar 

  35. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and all That. W. A. Benjamin, New York (1964)

    MATH  Google Scholar 

  36. Halmos, P.R.: Introduction to Hilbert Space and the Theory of Spectral Multiplicity. Chelsea, New York (1951)

    MATH  Google Scholar 

  37. t’Hooft, G.: The Cellular Automaton Interpretation of Quantum Mechanics. arXiv:1405.1548v2 (2014)

  38. Bruckner, B.S., Bruckner, J.B., Thomson, A.M.: Real Analysis. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  39. Tinkham, M.: Group Theory and Quantum Mechanics. Dover, New York (1964)

    MATH  Google Scholar 

  40. Feynman, R.P.: Space–time approach to non-relativistic quantum mechanics. Rev. Modern Phys. 20, 367–387 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  41. Kennard, E.H.: Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 44, 326–352 (1927)

    Article  ADS  MATH  Google Scholar 

  42. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163–164 (1929)

    Article  ADS  Google Scholar 

  43. Connes, A.: Noncommutative Geometry. Academic Press, London (1994)

  44. Chevalley, C.: Sur certains groupes simples. Tohoku Math. J. 2(7), 14–66 (1955)

    Article  MathSciNet  Google Scholar 

  45. Carter, R.W.: Simple Groups of Lie Type. Wiley, New York (1989)

    MATH  Google Scholar 

  46. Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. USA 46, 570–579 (1960)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Kac, M.: Statistical Independence in Probability, Analysis and Number Theory. The Mathematical Association of America (Carus Mathematical Monographs No. 12). The Mathematical Association of America, Washington (1959)

    Google Scholar 

  48. Garcia-Morales, V., Pellicer, J.: Microcanonical foundation of nonextensivity and generalized thermostatistics based on the fractality of the phase space. Physica A 361, 161–172 (2006)

    Article  ADS  Google Scholar 

  49. Garcia-Morales, V., Pellicer, J., Manzanares, J.A.: Thermodynamics based on the principle of least abbreviated action: entropy production in a network of coupled oscillators. Ann. Phys. (New York) 323, 1844–1858 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. de Broglie, L., La, L.: Thermodynamique de la particule isolé. Gauthier-Villars, Paris (1964)

    Google Scholar 

  51. de Broglie, L.: The reinterpretation of wave mechanics. Found. Phys. 1, 5–15 (1970)

    Article  ADS  Google Scholar 

  52. Koshy, T.: Triangular Arrays with Applications. Oxford University Press, New York (2011)

  53. Snygg, J.: A New Approach to Differential Geometry Using Clifford’s Geometric Algebra. Springer, New York (2012)

    Book  MATH  Google Scholar 

  54. Haag, R.: Local Quantum Physics: Fields, Particles and Algebras. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  55. Pathria, R.K., Beale, P.D.: Statistical Mechanics. Elsevier, Amsterdam (2011)

    MATH  Google Scholar 

  56. Gross, D.H.E.: Microcanonical Thermodynamics. World Scientific, Singapore (2001)

    Google Scholar 

  57. Ruelle, D.: Thermodynamic Formalism, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  58. Berdichevsky, V.L.: Thermodynamics of Chaos and Order. Addison Wesley Longman, Essex (1997)

    MATH  Google Scholar 

Download references

Acknowledgments

I thank Prof. José Antonio Manzanares for his many helpful remarks and Prof. José María Isidro San Juan for his comments on a previous version of this manuscript. Past support from the Technische Universität München - Institute for Advanced Study (funded by the German Excellence Initiative) through a three-years Carl von Linde Junior Fellowship (when this research was initiated) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Garcia-Morales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Morales, V. Quantum Mechanics and the Principle of Least Radix Economy. Found Phys 45, 295–332 (2015). https://doi.org/10.1007/s10701-015-9865-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9865-x

Keywords

Navigation