Skip to main content
Log in

Relativistic Sagnac Effect and Ehrenfest Paradox

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

There seems to exist a dilemma in the literature as to the correct relativistic formula for the Sagnac phase-shift. The paper addresses this issue in the light of a novel, kinematically equivalent linear Sagnac-type thought experiment, which provides a vantage point from which the effect of rotation in the usual Sagnac effect can be analyzed. The question is shown to be related to the so-called rotating disc problem known as the Ehrenfest paradox. The relativistic formula for the Sagnac phase-shift seems to depend on the way the paradox is resolved. Kinematic resolution of the Ehrenfest paradox proposed by some authors predicts the usually quoted formula for the Sagnac delay but the resolution itself is shown to be based upon some implicit assumptions regarding the behaviour of solid bodies under acceleration. In order to have a greater insight into the problem, a second version of the thought experiment involving linear motion of a “special type” of a non-rigid frame of reference is discussed. It is shown by analogy that the usually quoted special relativistic formula for the Sagnac delay follows, provided the material of the disc matches the “special type.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Sagnac, C. R. Acad. Sci. 157, 708–710 (1913).

    Google Scholar 

  2. E. J. Post, Rev. Modern Phys. 39, 475–493 (1967).

    Google Scholar 

  3. R. Anderson, H. R. Bilger, and G. E. Stedman, Amer. J. Phys. 62, 975–985 (1994).

    Google Scholar 

  4. G. B. Malykin, Phys.-Usp. 40, 317–321 (1997).

    Google Scholar 

  5. H. Hasselbach and M. Nicklaus, Phys. Rev. A 48, 143–151 (1993).

    Google Scholar 

  6. R. Colella, A. W. Overhauser, J. L. Staudenmann, and S. A. Werner, Phys. Rev. A 21, 1419–1438 (1980).

    Google Scholar 

  7. F. Riehle, Th. Kister, A. Wittie, J. Helmcke, and Ch. J. Borde, Phys. Rev. Lett. 67, 177–180 (1991).

    Google Scholar 

  8. D. Fargion, L. Chiatti, and A. Aiello, “Quantum Mach effect by Sagnac phase shift on Cooper pair in rf-SQUID, ” preprint astro-ph/9606117 (1996), 19 pages.

  9. S. Merhav, Aerospace Sensor Systems and Applications (Springer, New York, 1996).

    Google Scholar 

  10. D. W. Allan et al., IEEE Trans. Instrum. Meas. IM-34(2), 118–125 (1985).

    Google Scholar 

  11. N. Saburi, M. Yamamoto, and K. Harada, IEEE Trans. Instrum. Meas. IM-25, 473–477 (1976).

    Google Scholar 

  12. G. Petit and G. Wolf, Astronom. Astrophys. 286, 971–977 (1994).

    Google Scholar 

  13. J. Anandan, Phys. Rev. D. 24, 338–346 (1981).

    Google Scholar 

  14. D. Dieks and G. Nienhuis, Amer. J. Phys. 58, 650–655 (1990).

    Google Scholar 

  15. P. Langevin, C. R. Acad. Sci. (Paris) 173, 831–834, (1921).

    Google Scholar 

  16. M. Dresden and C. N. Yang, Phys. Rev. D 20, 1846–1848 (1979).

    Google Scholar 

  17. F. Selleri, Found. Phys. 26, 641–664 (1996).

    Google Scholar 

  18. F. Goy, “Non-invariant velocity of light and clock synchronization in accelerated systems, ” Proc. Physical Interpretation of Relativity Theory (V), held at Imperial College, London, pp. 129–138 (1996).

  19. R. D. Klauber, Found. Phys. Lett. 11, 405–444 (1998).

    Google Scholar 

  20. R. D. Klauber, Amer. J. Phys. 67, 158–159 (1998).

    Google Scholar 

  21. P. Ehrenfest, Phys. Z. 10, 918(1909).

    Google Scholar 

  22. ø. Grøn, Amer. J. Phys. 43, 869–876 (1975).

    Google Scholar 

  23. T. A. Weber, Amer. J. Phys. 65, 486–487 (1997).

    Google Scholar 

  24. S. K. Ghosal and M. Sarker, “Cosmologically preferred frame, linear Sagnac effect and absolute synchrony, ” Proc. Physical Interpretation of Relativity Theory Meeting (VI) (Supplementary papers), held at Imperial College, London, pp. 52–64 (1998).

  25. D. Dieks, Eur. J. Phys. 12, 253–259 (1991).

    Google Scholar 

  26. C. W. Sherwin, “Three theories of relative measurement, ” Paper presented at the Physical Interpretation of Relativity Theory Meeting (III), held at Imperial College, London (1992).

  27. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, 4th revised English edition (Pergamon, Oxford, 1975).

    Google Scholar 

  28. M. Born, Ann. Physik 30, 840(1909).

    Google Scholar 

  29. G. Cavalleri, Nuovo Cimento B 53, 415–431 (1968).

    Google Scholar 

  30. T. E. Phipps, Jr., “Experiment on relativistic rigidity of a rotating disc, ” NOLTR 73–9 (Naval Ordinance Laboratory, 1973), p. 47.

  31. J. L. Synge, Studies in Mathematics and Mechanics: Presented to Richard von Mises by Friends, Colleagues and Pupils (New York, 1954).

  32. J. R. Pounder, Comm. Dublin Institute for Advance Studies A 11 (1954).

  33. Yu. I. Sokolovsky, The Special Theory of Relativity (Hindustan Publishing, Delhi, 1962).

    Google Scholar 

  34. A. S. Eddington, The Mathematical Theory of Relativity (Cambridge University Press, Cambridge, 1965).

    Google Scholar 

  35. D. H. Weinstein, Nature 232, 548(1971).

    Google Scholar 

  36. A. Tartaglia, Found. Phys. Lett. 12(1), 17–28 (1999).

    Google Scholar 

  37. C. Møller, The Theory of Relativity (Oxford University Press, Oxford, 1952).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosal, S.K., Raychaudhuri, B., Chowdhury, A.K. et al. Relativistic Sagnac Effect and Ehrenfest Paradox. Foundations of Physics 33, 981–1001 (2003). https://doi.org/10.1023/A:1025621628746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025621628746

Navigation