Skip to main content
Log in

Integrally Closed Residuated Lattices

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

A residuated lattice is said to be integrally closed if it satisfies the quasiequations  \(xy \le x \implies y \le {\mathrm {e}}\)  and  \(yx \le ~x \implies y \le {\mathrm {e}}\), or equivalently, the equations  \(x \backslash x \approx {\mathrm {e}}\)  and  \(x /x \approx {\mathrm {e}}\). Every integral, cancellative, or divisible residuated lattice is integrally closed, and, conversely, every bounded integrally closed residuated lattice is integral. It is proved that the mapping \(a \mapsto (a \backslash {\mathrm {e}})\backslash {\mathrm {e}}\) on any integrally closed residuated lattice is a homomorphism onto a lattice-ordered group. A Glivenko-style property is then established for varieties of integrally closed residuated lattices with respect to varieties of lattice-ordered groups, showing in particular that integrally closed residuated lattices form the largest variety of residuated lattices admitting this property with respect to lattice-ordered groups. The Glivenko property is used to obtain a sequent calculus admitting cut-elimination for the variety of integrally closed residuated lattices and to establish the decidability, indeed PSPACE-completenes, of its equational theory. Finally, these results are related to previous work on (pseudo) BCI-algebras, semi-integral residuated pomonoids, and Casari’s comparative logic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahls, P., J. Cole, N. Galatos, P. Jipsen, and C. Tsinakis, Cancellative residuated lattices, Algebr. Univ. 50(1):83–106, 2003.

    Article  Google Scholar 

  2. Balbes, R., and Ph. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, MO., 1974.

  3. Blok, W. J., and C. J. Van Alten, On the finite embeddability property for residuated ordered groupoids, Trans. Amer. Math. Soc. 357(10):4141–4157, 2005.

    Article  Google Scholar 

  4. Blount, K., and C. Tsinakis, The structure of residuated lattices, Int. J. Algebr. Comput. 13(4):437–461, 2003.

    Article  Google Scholar 

  5. Blyth, T. S., Lattices and Ordered Algebraic Structures, Universitext, Springer-Verlag London, Ltd., London, 2005.

  6. Casari, E., Comparative logics, Synthese 73(3):421–449, 1987.

    Article  Google Scholar 

  7. Casari, E., Comparative logics and abelian \(\ell \)-groups, in C. Bonotto, R. Ferro, S. Valentini, and A. Zanardo, (eds.), Logic Colloquium ’88, Elsevier, 1989, pp. 161–190.

  8. Casari, E., Conjoining and disjoining on different levels, in M. L. Dalla Chiara, (ed.), Logic and Scientific Methods, Kluwer, Dordrecht, 1997, pp. 261–288.

  9. Ciabattoni, A., N. Galatos, and K. Terui, Algebraic proof theory for substructural logics: Cut-elimination and completions, Ann. Pure Appl. Logic 163(3):266–290, 2012.

    Article  Google Scholar 

  10. Clay, A., and D. Rolfsen, Ordered Groups and Topology, vol. 176 of Graduate Studies in Mathematics, American Mathematical Society, 2016.

  11. Dudek, W. A., and Y. B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24(2):187–190, 2008.

    Google Scholar 

  12. Emanovský, P., and J. Kühr, Some properties of pseudo-BCK- and pseudo-BCI-algebras, Fuzzy Sets and Systems 339:1–16, 2018.

    Article  Google Scholar 

  13. Fuchs, L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963.

    Google Scholar 

  14. Galatos, N., and P. Jipsen, Residuated frames with applications to decidability, Trans. Amer. Math. Soc. 364:1219–1249, 2013.

    Google Scholar 

  15. Galatos, N., P. Jipsen, T. Kowalski, and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, Amsterdam, 2007.

    Google Scholar 

  16. Galatos, N., and G. Metcalfe, Proof theory for lattice-ordered groups, Ann. Pure Appl. Logic 8(167):707–724, 2016.

    Article  Google Scholar 

  17. Galatos, N., and H. Ono, Glivenko theorems for substructural logics over FL, J. Symbolic Logic 71(4):1353–1384, 2006.

    Article  Google Scholar 

  18. Galatos, N., and C. Tsinakis, Generalized MV-algebras, J. Algebra 283(1):254–291, 2005.

    Article  Google Scholar 

  19. Glass, A. M. W., and Y. Gurevich, The word problem for lattice-ordered groups, Trans. Amer. Math. Soc. 280(1):127–138, 1983.

    Google Scholar 

  20. Holland, W. C., and S. H. McCleary, Solvability of the word problem in free lattice-ordered groups, Houston J. Math. 5(1):99–105, 1979.

    Google Scholar 

  21. Horčík, R., and K. Terui, Disjunction property and complexity of substructural logics, Theoret. Comput. Sci. 412(31):3992–4006, 2011.

    Article  Google Scholar 

  22. Iséki, K., An algebra related with a propositional calculus, Proc. Japan Acad. 42:26–29, 1966.

    Article  Google Scholar 

  23. Jipsen, P., and C. Tsinakis, A survey of residuated lattices, in J. Martinez, (ed.), Ordered Algebraic Structures, Kluwer, Alphen aan den Rijn, 2002, pp. 19–56.

    Chapter  Google Scholar 

  24. Kashima, R., and Y. Komori, The word problem for free BCI-algebras is decidable, Math. Japon. 37(6):1025–1029, 1992.

    Google Scholar 

  25. Kowalski, T., and S. Butchart, A note on monothetic BCI, Notre Dame J. Formal Logic 47(4):541–544, 2006.

    Article  Google Scholar 

  26. Kühr, J., Pseudo BCK-algebras and residuated lattices, in Contributions to General Algebra 16, Heyn, Klagenfurt, 2005, pp. 139–144.

  27. Metcalfe, G., Proof calculi for Casari’s comparative logics, J. Logic Comput. 16(4):405–422, 2006.

    Article  Google Scholar 

  28. Metcalfe, G., F. Paoli, and C. Tsinakis, Ordered algebras and logic, in H. Hosni, and F. Montagna, (eds.), Uncertainty and Rationality, Publications of the Scuola Normale Superiore di Pisa, Vol. 10, 2010, pp. 1–85.

  29. Montagna, F., and C. Tsinakis, Ordered groups with a conucleus, J. Pure Appl. Algebra 214(1):71–88, 2010.

    Article  Google Scholar 

  30. Paoli, F., The proof theory of comparative logic, Logique et Analyse 171:357–370, 2000.

    Google Scholar 

  31. Raftery, J. G., and C. J. van Alten, Residuation in commutative ordered monoids with minimal zero, Rep. Math. Logic 34:23–57, 2000.

    Google Scholar 

  32. Savitch, W. J., Relationships between nondeterministic and deterministic tape complexities, J. Comput. Syst. Sci. 4(2):177–192, 1970.

    Article  Google Scholar 

Download references

Acknowledgements

The research reported in this paper was supported by Swiss National Science Foundation (SNF) Grant 200021_184693.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Metcalfe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gil-Férez, J., Lauridsen, F.M. & Metcalfe, G. Integrally Closed Residuated Lattices. Stud Logica 108, 1063–1086 (2020). https://doi.org/10.1007/s11225-019-09888-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-019-09888-9

Keywords

Navigation