Skip to main content
Log in

Developmental Scaffolding

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

The concept of scaffolding has wide resonance in several scientific fields. Here we attempt to adopt it for the study of development. In this perspective, the embryo is conceived as an integral whole, comprised of several hierarchical modules as in a recurrent circularity of emerging patterns. Within the developmental hierarchy, each module yields an inter-level relationship that makes it possible for the scaffolding to mediate the production of selectable variations. A wide range of genetic, cellular and morphological mechanisms allows the scaffolding to integrate these modular variations into a functionally coordinate unit. A genetic scaffolding accounts for the inherited invariance of pattern formation during the embryo’s growth. At higher level, cells behave as agents endowed with the capacity to interpret any scaffolding variation as signs. The full hierarchy of a multi-level scaffolding is eventually attained when the embryo acquires the capacity to impose a number of developmental constraints on its constituting parts in a top-down direction. The acquisition of this capacity allows a semiotic threshold to emerge between the living cellular world and the underlying non-living molecular world. As this boundary is gradually defined during development, cells enter into new functional relationships, while, at the same time, are relieved from their physical determinism. The resulting constraints can thus become the driving forces that upgrade embryonic scaffolding from the simple molecular signalling to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships selected amongst the ones historically explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abzhanov, A. (2013). von Baer’s law for the ages: lost and found principles of developmental evolution. Trends in Genetics, 29, 712–722.

    Article  CAS  PubMed  Google Scholar 

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Molecular biology of the cell (4th ed.). New York: Garland Science.

    Google Scholar 

  • Bains, P. (2014). The primacy of semiosis. An ontology of relations. Toronto: University of Toronto Press.

    Google Scholar 

  • Baker, J., Liu, J.-P., Robertson, E. J., & Efstratiadis, A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75, 73–82.

    Article  CAS  PubMed  Google Scholar 

  • Bechtel, W. (2006). Discovering cell mechanisms. The creation of modern cell biology. New York: Cambridge University Press.

    Google Scholar 

  • Bedian, V. (2001). Self-description and the origin of the genetic code. Biosystems, 60, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Berthoz, A. (2009). La simplexité. Paris: Odile Jacob.

    Google Scholar 

  • Bhat, R., & Bissell, M. J. (2014). Of plasticity and specificity: dialectics of the microenvironment and macroenvironment and the organ phenotype. Wiley Interdisciplinary Review Developmental Biology, 3, 147–163.

    Article  CAS  Google Scholar 

  • Bickhard, M. H. (2005). Functional scaffolding and self scaffolding. New Ideas in Psychology, 23, 166–173.

    Article  Google Scholar 

  • Breitwieser, G. E. (2004). G protein-coupled receptor oligomerization: implications for G protein activation and cell signaling. Circulation Research, 94, 17–27.

    Article  CAS  PubMed  Google Scholar 

  • Brooks, D. R., & Wiley, E. O. (1988). Evolution as entropy. Toward a unified theory of biology. Chicago: University Chicago Press.

    Google Scholar 

  • Brown, N. H. (2011). Extracellular matrix in development: insights from mechanisms conserved between invertebrates and vertebrates. Cold Spring Harbor Perspectives in Biology, 3, a005082.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bryant, P. J. (1970). Cell lineage relationships in the imaginal wing disc of Drosophila melanogaster. Developmental Biology, 22, 389–411.

    Article  CAS  PubMed  Google Scholar 

  • Buchholtz, E. A. (2014). Crossing the frontier: a hypothesis for the origins of meristic constraint in mammalian axial patterning. Zoology, 117, 64–69.

    Article  PubMed  Google Scholar 

  • Buss, L. (1987). The evolution of individuality. Princeton: Princeton University Press.

    Google Scholar 

  • Cocucci, E., Racchetti, G., & Meldolesi, J. (2008). Shedding microvesicles: artefacts no more. Trends in Cell Biology, 19, 43–51.

    Article  Google Scholar 

  • Cohen, J., & Stewart, I. (1995). The collapse of chaos: Discovering simplicity in a complex world. London: Penguin.

    Google Scholar 

  • Craver, C. F. (2013). Functions and mechanisms: A perspectivalist view. In P. Huneman (Ed.), Functions: Selection and mechanisms (pp. 133–158). Dordrecht: Synthese Library, Springer.

    Chapter  Google Scholar 

  • Czirok, A., Rongish, B. J., & Little, C. D. (2013). Extracellular matrix dynamics in early development. In D. W. DeSimone & R. P. Mecham (Eds.), Extracellular matrix in development. Biology of extracellular matrix (pp. 19–36). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Dahmann, C., Oates, A., & Brand, M. (2011). Boundary formation and maintenance in tissue development. Nature Reviews Genetics, 12, 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Dawid, I. B. (2009). Differential gene expression in vertebrate embryos. Journal of Biological Chemistry, 284, 13277–13283.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deacon, T. W. (2006). Reciprocal linkage between self-organizing processes is sufficient for self-reproduction and evolvability. Biological Theory, 1, 136–149.

    Article  Google Scholar 

  • Deacon, T. W. (2012). The incomplete nature. New York: Norton W. W. & Company.

    Google Scholar 

  • Emmeche, C., Kull, K., & Stjernfelt, F. (2002). Reading Hoffmeyer, rethinking biology. Tartu: Tartu University Press.

    Google Scholar 

  • Fedoriw, A., Mugford, J., & Magnuson, T. (2012). Genomic imprinting and epigenetic control of development. Cold Spring Harbor Perspectives in Biology, 4, a008136.

    Article  PubMed Central  PubMed  Google Scholar 

  • Garcia-Bellido, A., & Merriam, J. (1971). Parameters of the wing imaginal disc development of Drosophila melanogaster. Developmental Biology, 24, 61–87.

    Article  CAS  PubMed  Google Scholar 

  • Gerson, E. M. (2007). The juncture of evolutionary and developmental biology. In M. D. Laubichler & J. Maienschein (Eds.), Embryology to evo-devo: A history of developmental evolution (pp. 435–464). Massachusetts: The MIT Press Cambridge.

    Google Scholar 

  • Gilbert, S. F. (2010). Developmental biology. Sunderland: Sinauer Associates.

    Google Scholar 

  • Gilbert, S. F., & Bard, J. (2014). Formalizing theories of development: A fugue of the orderliness of change. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 129–143). Oxford: Oxford University Press.

    Google Scholar 

  • Giorgi, F., Bruni, L. E., & Maggio, R. (2013). Semiotic selection of mutated or misfolded receptor proteins. Biosemiotics, 6, 177–190.

    Article  Google Scholar 

  • Good, M. C., Zalatan, J. G., & Lim, W. A. (2011). Scaffold proteins: hubs for controlling the flow of cellular information. Science, 332, 680–686.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Griesemer, J. R. (2014a). Reproduction and scaffolded developmental processes: An integrated evolutionary perspective. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 183–202). Oxford: Oxford University Press.

    Google Scholar 

  • Griesemer, J. R. (2014b). Reproduction and the scaffolded development of hybrids. In L. R. Caporael, J. R. Griesemer, & W. C. Winsatt (Eds.), Developing scaffolds in evolution, culture and cognition (pp. 23–55). Massachusetts: The MIT Press Cambridge.

    Google Scholar 

  • Griffiths, P. E., & Gray, R. D. (2004). The developmental systems perspective: Organism-environment systems as units of evolution. In K. Preston & M. Pigliucci (Eds.), Phenotypic integration: Studying the ecology and evolution of complex phenotypes (pp. 409–431). Oxford: Oxford University Press.

    Google Scholar 

  • Griffiths, P. E., & Stotz, K. (2007). Gene. In D. L. Hull & M. Ruse (Eds.), The Cambridge companion to the philosophy of biology (pp. 85–102). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Heng, H. H., Goetze, S., Ye, C. J., Liu, G., Stevens, J. B., Bremer, S. W., Wykes, S. M., Bode, J., & Krawetz, S. A. (2004). Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. Journal of Cell Science, 117, 999–1008.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeyer, J. (2007). Semiotic scaffolding of living systems. In M. Barbieri (Ed.), Introduction to biosemiotics (pp. 149–166). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hoffmeyer, J. (2013). Why do we need a semiotic understanding of life? In B. Henning & A. Scarfe (Eds.), Beyond mechanism. Putting life back into biology (pp. 147–168). Scranton: Lexington Books.

    Google Scholar 

  • Jaeger, J., & Sharpe, J. (2014). On the concept of mechanism in development. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 56–78). Oxford: Oxford University Press.

    Google Scholar 

  • Jaeger, J., Irons, D., & Monk, N. (2008). Regulative feedback in pattern formation: towards a general relativistic theory of positional information. Development, 135, 3175–3183.

    Article  CAS  PubMed  Google Scholar 

  • Jantsch, E. (1975). Design for evolution: Self-organization and planning in the life of human systems. Garland: Trinity City Books, LLC.

    Google Scholar 

  • Kauffman, S. A. (2002). Investigations. New York: Oxford University Press.

    Google Scholar 

  • Klingenberg, C. P. (2005). Developmental constraints, modules and evolvability. In B. Hallgrímsson & B. K. Hall (Eds.), Variation (pp. 219–247). San Diego: Academic.

    Chapter  Google Scholar 

  • Klingenberg, C. P. (2010). Evolution and development of shape: integrating quantitative approaches. Nature Reviews, 11, 623–635.

    CAS  PubMed  Google Scholar 

  • Kull, K. (1998). Organism as a self-reading text: anticipation and semiosis. International Journal of Computing Anticipatory Systems, 1, 93–104.

    Google Scholar 

  • Kull, K. (2009). Vegetative, animal, and cultural semiosis: the semiotic threshold zones. Cognitive Semiotics, 4, 8–27.

    Article  Google Scholar 

  • Laplane, L. (2011). Stem cells and the temporal boundaries of development: toward a species-dependent view. Biological Theory, 6, 48–58.

    Article  Google Scholar 

  • Laubichler, M. D., & Maienschein, J. (2005). Development. In M. C. Horowitz (Ed.), New dictionary of the history of ideas (pp. 570–574). Detroit: Thomson Gale.

    Google Scholar 

  • Levin, M. (2012). Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Biosystems, 109, 243–261.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lorthongpanich, C., Doris, T. P., Limviphuvadh, V., Knowles, B. B., & Solter, D. (2012). Developmental fate and lineage commitment of singles mouse blastomeres. Development, 139, 3722–3731.

    Article  CAS  PubMed  Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.

    Article  Google Scholar 

  • Mammoto, T., & Ingber, D. E. (2010). Mechanical control of tissue and organ development. Development, 137, 1407–1420.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez-Menárguez, J. A. (2013). Intra-golgi transport: roles for vesicles, tubules, and cisternae. ISRN Cell Biology ID 126731.

  • Maturana, H. R., & Varela, F. J. (1987). The tree of knowledge: The biological roots of human understanding. Boston: Shambhala Publications.

    Google Scholar 

  • Mebius, A. (2014). A weakened mechanism is still a mechanism: on the causal role of absences in mechanistic explanation. Studies in History and Philosophy of Biological and Biomedical Sciences, 45, 43–48.

    Article  PubMed  Google Scholar 

  • Minelli, A., & Pradeu, T. (2014). Theories of development in biology – problems and perspectives. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 1–14). Oxford: Oxford University Press.

    Google Scholar 

  • Mittelbrunn, M., & Sánchez-Madrid, F. (2012). Intercellular communication: diverse structures for exchange of genetic information. Nature Reviews Molecular Cell Biolology, 13, 328–335.

    CAS  Google Scholar 

  • Müller, P., Rogers, K. W., Yu, S. R., Brand, M., & Schier, A. F. (2013). Morphogen transport. Development, 140, 1621–1638.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nelson, C. M., & Bissell, M. J. (2006). Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annual Review of Cell and Developmental Biology, 22, 287–309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Newman, S. A. (2014a). Exitable media in media res: How physics scaffolds metazoan development and evolution. In L. R. Caporael, J. R. Griesemer, & W. C. Wimsatt (Eds.), Developing scaffolds in evolution, culture and cognition (pp. 109–123). Massachusetts: The MIT Press Cambridge.

    Google Scholar 

  • Newman, S. A. (2014b). Physico-genetics of morphogenesis: The hybrid nature of developmental mechanisms. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 95–113). Oxford, UK: Oxford University Press.

    Google Scholar 

  • Noble, D. (2002). Modeling the heart–from genes to cells to the whole organ. Science, 295, 1678–1682.

    Article  CAS  PubMed  Google Scholar 

  • Noble, D. (2008). Genes and causation. Philosophical Transactions of the Royal Society A, 366, 3001–3015.

    Article  CAS  Google Scholar 

  • Pattee, H. H. (2007). The necessity of biosemiotics: A matter-symbol complementarity. In M. Barbieri (Ed.), Introduction to biosemiotics (pp. 115–132). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Pattee, H. H. (2009). Response by H. H. Pattee to Jon Umerez’s paper: where does Pattee’s how does a molecule become a message? Belong in the history of biosemiotics? Biosemiotics, 2, 291–302.

    Article  Google Scholar 

  • Pepper, J. W., & Herron, M. D. (2008). Does biology need an organism concept? Biological Reviews, 83, 621–627.

    Article  PubMed  Google Scholar 

  • Piaget, J. (1971). Biology and knowledge. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Ping, G., Yuan, J. M., Sun, Z., & Wei, Y. (2004). Studies of effects of macromolecular crowding and confinement on protein folding and protein stability. Journal of Molecular Recognition, 17, 433–440.

    Article  CAS  PubMed  Google Scholar 

  • Rips, L. J. (2008). Logical approaches to human deductive reasoning. In J. E. Adler & L. J. Rips (Eds.), Studies of human inference and its foundations (pp. 187–205). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Rogulja, D., & Irvine, K. D. (2005). Regulation of cell proliferation by a morphogen gradient. Cell, 123, 449–461.

    Article  CAS  PubMed  Google Scholar 

  • Rozario, T., & DeSimone, D. W. (2010). The extracellular matrix in development and morphogenesis: a dynamic view. Developmental Biology, 341, 126–140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Safari, F., & Suetsugu, S. (2012). The BAR domain superfamily proteins from subcellular structures to human diseases. Membranes, 2, 91–117.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwank, G., & Basler, K. (2010). Regulation of organ growth by morphogen gradients. Cold Spring Harbor Perspectives in Biology, 2, a001669.

    Article  PubMed Central  PubMed  Google Scholar 

  • Smith, K. K. (2003). Time’s arrow: heterochrony and the evolution of development. International Journal of Developmental Biology, 47, 613–621.

    PubMed  Google Scholar 

  • Thomson, K. S. (1988). Morphogenesis and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Vecchi, D., & Hernandez, I. (2014). The epistemological resilience of the concept of morphogenetic field. In A. Minelli & T. Pradeu (Eds.), Towards a theory of development (pp. 79–94). Oxford: Oxford University Press.

    Google Scholar 

  • Waddington, C. H. (1957). The strategy of the genes. A discussion of some aspects of theoretical biology. London: George Allen & Unwin, Ltd.

    Google Scholar 

  • Waddington, C. H. (1969). Sketching theoretical biology. In C. H. Waddington (Ed.), Toward a theoretical biology (Vol. 2, pp. 1–9). New Brunswick: Transaction Publishers.

    Google Scholar 

  • Wagner, G. P. (2014). Homology, genes and evolutionary innovation. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Wartlick, O., Kicheva, A., & González-Gaitán, M. (2009). Morphogen gradient formation. Cold Spring Harbor Perspectives in Biology, 1, a001255.

    Article  PubMed Central  PubMed  Google Scholar 

  • Watson, L. A., Solomon, L. A., Li, J. R., Jiang, Y., Edwards, M., Shin-ya, K., Beier, F., & Bérubé, N. G. (2013). Atrx deficiency induces telomere dysfunction, endocrine defects, and reduced life span. Journal of Clinical Investigation, 123, 2049–2063.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weisblat, D. A. (1998). Embryonic development as a quasi-historical process. International Journal of Developmental Biology, 42, 475–478.

    CAS  PubMed  Google Scholar 

  • Wills, P. R. (2001). Autocatalysis, information and coding. Biosystems, 60, 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychiatry and Psychology, 17, 89–100.

    Article  CAS  Google Scholar 

  • Woodward, J. (2003). Making things happen. New York: Oxford University Press.

    Google Scholar 

  • Zhou, H.-X. (2008). Protein folding in confined and crowded environments. Archives of Biochemistry and Biophysics, 469, 76–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zoldan, J., Karagiannis, E. D., Lee, C. Y., Anderson, D. G., Langer, R., & Levenberg, S. (2011). The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials, 32, 9612–9621.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethical Standards

The authors hereby certify that:

• This manuscript has not been submitted to any other journal

• This manuscript has not been published previously

• No data have been manipulated to support the paper conclusions

• Proper acknowledgements to other works has been given throughout the text

• Submission has been approved by the authors who took part in the work

• Authors whose names appear on the submission have equally contributed to the work

• The present research did not require any Human or Animal participation

• No informed consent was required because the research did not involve human participants,

• No funds were required nor given for the accomplishment of this project

• There were no potential conflicts of interest of either financial or personal type that might have compromised the authors’ ability to conduct or report their research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Giorgi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgi, F., Bruni, L.E. Developmental Scaffolding. Biosemiotics 8, 173–189 (2015). https://doi.org/10.1007/s12304-015-9235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-015-9235-2

Keywords

Navigation