Skip to main content
Log in

Semiotic Selection of Mutated or Misfolded Receptor Proteins

  • Original Paper
  • Published:
Biosemiotics Aims and scope Submit manuscript

Abstract

Receptor oligomerization plays a key role in maintaining genome stability and restricting protein mutagenesis. When properly folded, protein monomers assemble as oligomeric receptors and interact with environmental ligands. In a gene-centered view, the ligand specificity expressed by these receptors is assumed to be causally predetermined by the cell genome. However, this mechanism does not fully explain how differentiated cells have come to express specific receptor repertoires and which combinatorial codes have been explored to activate their associated signaling pathways. It is our contention that the plasma membrane acts as the locus where several contextual cues may be integrated. As such it allows the semiotic selection of those receptor configurations that provide cells with the minimum essential requirements for agency. The occurrence of protein misfolding makes it impossible for receptor monomers to assemble along the membrane and to sustain meaningful relationships with environmental ligands. How could a cell lineage deal with these loss-of-function mutations during evolution and restrain gene redundancy accordingly? In this paper, we will be arguing that the easiest way for bacteria clones to accomplish this goal is by getting rid of cells expressing mutated receptor proteins. The mechanism sustaining this cell selection is also occurring in many somatic tissues and its function is currently believed to counteract in vivo protein mutagenesis. Our discussion will be mainly focused on the significance and semiotic nature of the interplay between membrane receptors and the epigenetic control of gene expression, as mediated by the control of mismatched repairing and protein folding mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, D. L., & Trevors, J. T. (2005). Three subsets of sequence complexity and their relevance to biopolymeric information. Theoretical Biology and Medical Modelling, 2, 29.

    Article  PubMed  Google Scholar 

  • Anelli, T., & Sitia, R. (2008). Protein quality control in the early secretory pathway. EMBO Journal, 27, 315–327.

    Article  PubMed  CAS  Google Scholar 

  • Bateson, G. (1972). Steps to an ecology of mind. San Francisco: Chandler Publishing Company.

    Google Scholar 

  • Bateson, G. (1979). Mind and nature: a necessary unity. New York: EP Dutton.

    Google Scholar 

  • Bebenek, K., Pedersen, L. C., & Kunkel, T. A. (2011). Replication infidelity via a mismatch with Watson-Crick geometry. Proceedings of National Academy of Sciences, USA, 108, 1862–1867. doi:10.1073/pnas.1012825108.

  • Biebermann, H., Schöneberg, T., Hess, C., Germak, J., Gudermann, T., & Grüters, A. (2001). The first activating TSH receptor mutation in transmembrane domain 1 identified in a family with non autoimmune hyperthyroidism. Journal of Clinical Endocrinology and Metabolism, 86, 4429–4433.

    Article  PubMed  CAS  Google Scholar 

  • Bronner, C., Fuhrmann, G., Chédin, F. L., Macaluso, M., & Dhe-Paganon, S. (2009). UHRF1 links the histone code and DNA methylation to ensure faithful epigenetic memory inheritance. Genetics & Epigenetics, 2, 29–36.

    CAS  Google Scholar 

  • Bruni, L. E. (2007). Cellular semiotics and signal transduction. In M. Barbieri (Ed.), Introduction to Biosemiotics (pp. 365–408). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bruni, L. E. (2008). Gregory Bateson’s relevance to current molecular biology. In J. Hoffmeyer (Ed.), A legacy for living systems. Gregory Bateson as Precursor to Biosemiotics, 2, 93–119.

  • Cariani, P. (1998). Towards an evolutionary semiotics: The emergence of new sign-functions in organisms and devices. In G. Van de Vijver, S. Salthe, & M. Delpos (Eds.), Evolutionary systems (pp. 359–377). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Cheng, W.-C., & Hardwick, J. M. (2007). A quorum on bacterial programmed cell death. Molecular Cell, 28, 515–517.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P. M., Ulloa-Aguirre, A., Ito, J., & Janovick, J. A. (2007). G protein-coupled receptor trafficking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacological Review, 59, 225–250.

    Article  CAS  Google Scholar 

  • Csete, M., & Doyle, J. (2004). Bow ties, metabolism and disease. Trends in Biotechnology, 22, 446–450.

    Article  PubMed  CAS  Google Scholar 

  • Dohet, C., Wagner, R., & Radman, M. (1985). Repair of defined single base-pair mismatches in Escherichia coli. Proceedings of National Academy of Sciences, USA, 82, 503–505.

    Article  CAS  Google Scholar 

  • Doutriaux, M.-P., Wagner, R., & Radman, R. (1986). Mismatch-stimulated killing. Proceedings of National Academy of Sciences, USA, 83, 2576–2578.

    Article  CAS  Google Scholar 

  • Drummond, D. A., & Wilke, C. O. (2008). Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell, 134, 341–352.

    Article  PubMed  CAS  Google Scholar 

  • Eigen, M. (1971). Self-organization of matter and the evolution of biological molecules. Naturwissenschaften, 10, 465–523.

    Article  Google Scholar 

  • Engelberg-Kulka, H., Amitai, S., Kolodkin-Gal, I., & Hazan, R. (2006). Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genetics, 2(10), e135.

    Article  PubMed  Google Scholar 

  • Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S., & Hazan, R. (2004). Bacterial programmed cell death systems as targets for antibiotics. Trends in Microbiology, 12, 66–71.

    Article  PubMed  CAS  Google Scholar 

  • Fanelli, F. (2007). Dimerization of the lutropin receptor: insights from computational modeling. Molecular and Cell Endocrinology, 260–262, 59–64.

    Article  Google Scholar 

  • Fink, A. L. (1999). Chaperone-mediated protein folding. Physiological Reviews, 79, 425–449.

    PubMed  CAS  Google Scholar 

  • Fink, S. L., & Cookson, B. T. (2005). Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infection and Immunity, 73, 1907–1916.

    Article  PubMed  CAS  Google Scholar 

  • Foster, P. L. (1993). Adaptive mutation: the use of adversity. Annual Review of Microbiology, 47, 467–504.

    Article  PubMed  CAS  Google Scholar 

  • Gallagher, M. J., Ding, L., Maheshwari, A., & Macdonald, R. L. (2007). The GABAA receptor alpha1 subunit epilepsy mutation A322D inhibits transmembrane helix formation and causes proteasomal degradation. Proceedings of National Academy of Sciences, USA, 104, 1299–3004.

    Google Scholar 

  • Giorgi, F., & Bruni, L. E. (2011). The semiosis of germ cell interactions in ovarian and embryonic development. In K. Kull, J. Hoffmeyer, A. Sharov (Eds.), Semiotic approaches to evolution. Springer-Verlag. (forthcoming).

  • Giorgi, F., Bruni, L. E., & Maggio, R. (2010). Receptor Oligomerization as a process modulating cellular semiotics. Biosemiotics, 3, 157–176.

    Article  Google Scholar 

  • Giorgi, F., Maggio, R., & Bruni, L. E. (2011). Are olfactory receptors really olfactive? Biosemiotics, 4, 331–347.

    Article  Google Scholar 

  • Gorlich, D., Artmann, S., & Dittrich, P. (2011). Cells as semantic systems. Biochimica et Biophysica Acta. doi:10.1016/j.bbagen.2011.04.004.

  • Gudwin, R. R. (2001). Semiotic synthesis and semionic networks. In SEE’01–2nd International Conference on Semiotics, Evolution and Energy. Toronto: University of Toronto.

  • Gur, E., & Sauer, R. T. (2008). Recognition of misfolded proteins by Lon, a AAA + protease. Genes & Development, 22, 2267–2277.

    Article  CAS  Google Scholar 

  • Harfe, B. D., & Jinks-Robertson, S. (2000). DNA Mismatch repair and genetic instability. Annual Review of Genetics, 34, 359–399.

    Article  PubMed  CAS  Google Scholar 

  • Hershberg, R., & Petrov, D. A. (2009). General rules for optimal codon choice. PLoS Genetics, 5, e1000556.

    Article  PubMed  Google Scholar 

  • Hopfield, J. J. (1974). Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes equiring high specificity. Proceedings of National Academy of Sciences, USA, 71, 4135–4139.

    Article  CAS  Google Scholar 

  • Hughes, M. A., Harper, N., Butterworth, M., Cain, K., Cohen, G. M., & MacFarlane, M. (2009). Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Molecular Cell, 35, 265–279.

    Article  PubMed  CAS  Google Scholar 

  • Kamp, C., Wilke, C. O., Adami, C., & Bornholdt, S. (2003). Viral evolution under the pressure of an adaptive immune system: optimal mutation rates for viral escape. Complexity, 8, 28–33.

    Article  Google Scholar 

  • Kimura, S., Maruyama, J., Kikuma, T., Arioka, M., & Kitamoto, K. (2011). Autophagy delivers misfolded secretory proteins accumulated in endoplasmic reticulum to vacuoles in the filamentous fungus Aspergillus oryzae. Biochemical and Biophysical Research Communications, 406, 464–470.

    Article  PubMed  CAS  Google Scholar 

  • Kolodkin-Gal, I., Hazan, R., Gaathon, A., Carmeli, S., & Engelberg-Kulka, H. (2007). A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science, 318, 652–655.

    Article  PubMed  CAS  Google Scholar 

  • Kull, K. (2009). Vegetative, animal, and cultural semiosis: the semiotic threshold zones. Cognitive Semiotics, 4, 8–27.

    Article  Google Scholar 

  • Lampert, A., & Tlusty, T. (2009). Mutability as an altruistic trait in finite asexual populations. Journal of Theoretical Biology, 261, 414–422.

    Article  PubMed  Google Scholar 

  • Layton, J. C., & Foster, P. L. (2005). Error-prone DNA polymerase IV is regulated by the heat shock chaperone GroE in Escherichia coli. Journal of Bacteriology, 187, 449–457.

    Article  PubMed  CAS  Google Scholar 

  • Manrubia, S. C., Domingo, E., & Lázaro, L. (2010). Pathways to extinction: beyond the error threshold. Philosophical Transactions of the Royal Society B, 365, 1943–1952.

    Article  Google Scholar 

  • Menzies, F. M., Moreau, K., & Rubinsztein, D. C. (2011). Protein misfolding disorders and macroautophagy. Current Opinions in Cell Biology, 23(2), 190–197.

    Article  CAS  Google Scholar 

  • Polouliakh, N., Nock, R., Nielsen, F., & Kitano, H. (2009). G-Protein coupled receptor signaling architecture of mammalian immune cells. PLoS One, 4(1), e4189.

    Article  PubMed  Google Scholar 

  • Pray, L. (2008). DNA replication and causes of mutation. Nature Education, 1(1).

  • Rattray, A. J., & Strathern, J. N. (2003). Error-prone DNA polymerases: when making a mistake is the only way to get ahead. Annual Review of Genetics, 37, 31–66.

    Article  PubMed  CAS  Google Scholar 

  • Ren, Y., Silverstein, R. L., Allen, J., & Savill, J. (1995). CD36 gene transfer confers capacity for phagocytosis of cells undergoing apoptosis. The Journal of Experimental Medicine, 181, 857–1862.

    Article  Google Scholar 

  • Reubold, T. F., Wohlgemuth, S., & Eschenburg, S. (2009). A new model for the transition of APAF-1 from inactive monomer to caspase-activating apoptosome. The Journal of Biological Chemistry, 284, 32717–32724.

    Article  PubMed  CAS  Google Scholar 

  • Riedl, S. J., & Salvesen, G. S. (2007). The apoptosome: signaling platform of cell death. Nature Reviews, 8, 405–413.

    PubMed  CAS  Google Scholar 

  • Rorth, P. (2008). Quality control in an unreliable world. EMBO Journal, 27, 303–305.

    Article  CAS  Google Scholar 

  • Roth, J. R., Kofoid, E., Roth, F. P., Berg, O. G., Seger, J., & Andersson, D. I. (2003). Regulating general mutation rates: examination of the hypermutable state model for Cairnsian adaptive mutation. Genetics, 163, 1483–1496.

    PubMed  CAS  Google Scholar 

  • Siso-Nadal, F., Fox, J. J., Laporte, S. A., Hébert, T. E., & Swain, P. S. (2009). Cross-talk between signaling pathways can generate robust oscillations in calcium and cAMP. PLoS One, 4(10), e7189.

    Article  PubMed  Google Scholar 

  • Smock, R. G., Rivoire, O., Russ, W. P., Swain, J. F., Leibler, S., Ranganathan, R., & Gierasch, L. M. (2010). An interdomain sector mediating allostery in Hsp70 molecular chaperones. Molecular Systems Biology, 6, 414.

    Article  PubMed  Google Scholar 

  • Sniegowski, P. D., & Gerrish, P. J. (2010). Beneficial mutations and the dynamics of adaptation in asexual populations. Philosophical Transactions of the Royal Society B, 365, 1255–1263.

    Article  Google Scholar 

  • Soyer, O. S., Pfeiffer, T., & Bonhoeffer, S. (2006). Simulating the evolution of signal transduction pathways. Journal of Theoretical Biology, 241, 223–232.

    Article  PubMed  CAS  Google Scholar 

  • Stefani, M. (2008). Protein folding and misfolding on surfaces. International Journal of Molecular Sciences, 9, 2515–2542.

    Article  PubMed  CAS  Google Scholar 

  • Upton, J. P., Austgen, K., Nishino, M., Coakley, K. M., Hagen, A., Han, D., Papa, F. R., & Oakes, S. A. (2008). Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Molecular Cell Biology, 28, 3943–3951.

    Article  CAS  Google Scholar 

  • Van Craenenbroeck, K., Borroto-Escuela, D. O., Romero-Fernandez, W., Skieterska, K., Rondou, P., Lintermans, B., Vanhoenacker, P., Fuxe, K., Ciruela, F., & Haegeman, G. (2011). Dopamine D4 receptor oligomerization–contribution to receptor biogenesis. FEBS Journal, 278, 1333–1344.

    Article  PubMed  Google Scholar 

  • Vehkavaara, T. (1998). Extended concept of knowledge for evolutionary epistemology and for Biosemiotics. Acta Polytechnica Scandinavica, 91, 207–216.

    Google Scholar 

  • Vernooy, S. Y., Copeland, J., Ghaboosi, Z., Griffin, E. E., Yoo, S. J., & Hay, B. A. (2000). Cell death regulation in Drosophila: conservation of mechanism and unique insights. The Journal of Cell Biology, 150, F69–F75.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, A. (2008). Robustness and evolvability: a paradox resolved. Proceedings of the Royal Society B, 275, 91–100.

    Article  PubMed  Google Scholar 

  • Wagner, R., Dohet, C., Jones, M., Doutriaux, M.-P., Hutchinson, F., & Radman, R. (1984). Replication and recombination involvement of Escherichia coli mismatch repair in DNA. Cold Spring Harbor Symposia on Quantitative Biology, 49, 611–615.

    Article  PubMed  CAS  Google Scholar 

  • Yang, W. (2000). Structure and function of mismatch repair proteins. Mutation Research, 460, 245–256.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Giorgi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giorgi, F., Bruni, L.E. & Maggio, R. Semiotic Selection of Mutated or Misfolded Receptor Proteins. Biosemiotics 6, 177–190 (2013). https://doi.org/10.1007/s12304-012-9143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12304-012-9143-7

Keywords

Navigation