Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (A) December 9, 2020

ReGenesis

Leben als Laborartefakt

  • Gabriele Gramelsberger EMAIL logo

Abstract

Inspired by the success of synthesising organic substances by Friedrich Wöhler in 1828, the vision of creating life in the laboratory synthetically has become increasingly accessible for today’s synthetic biology and synthetic genomics, respectively. The engineering of biology – a contemporary version of the liaison of technology and organic form – creates cellular machines, biobricks, biomolecular ‘borgs’, and entire synthetic genomes of artificial organisms. Besides major ethical concerns, the shift in scientific epistemology is of interest. Unlike classical analytical science, synthetic science understands by a process of generation, through which myriads of new things are created, dramatically changing the living environment.

Literatur

Adami, C. (1998), Introduction to Artificial Life, New York.10.1007/978-1-4612-1650-6Search in Google Scholar

Aristoteles (1976), Lehre vom Beweis oder Zweite Analytik, Hamburg.Search in Google Scholar

Attwater, J., u. Holliger, P. (2014), A synthetic approach to abiogenesis, in: Nature Methods 11.5, 495–498.10.1038/nmeth.2893Search in Google Scholar

Bechtel, W. (2006), Discovering Cell Mechanisms: The Creation of Modern Cell Biology, Cambridge.10.1017/CBO9781139164962Search in Google Scholar

Bensaude-Vincent, B. (2013), Discipline-building in synthetic biology, in: Studies in History and Philosophy of Biological and Biomedical Sciences 44.2, 122–129.10.1016/j.shpsc.2013.03.007Search in Google Scholar

Blumenberg, H. (1986), Die Lesbarkeit der Welt, Frankfurt am Main.Search in Google Scholar

Boeke, J. D., Church, G., Hessel, A., et al. (2016), The Genome Project-write, in: Science 353.6295, 126–127.10.1126/science.aaf6850Search in Google Scholar

Cassirer, E. (1911), Das Erkenntnisproblem in der Philosophie und Wissenschaft der neueren Zeit 1, Berlin.Search in Google Scholar

Church, G. M., Gao, Y., u. Kosuri, S. (2012), Next-Generation Digital Information Storage in DNA, in: Science 337.6201, 1628.10.1126/science.1226355Search in Google Scholar

Church, G. M., u. Regis, E. (2014), Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves, New York.Search in Google Scholar

Davies, J. A. (2005), Mechanisms of Morphogenesis, Cambridge, Mass.Search in Google Scholar

Davies, J. A. (2008), Synthetic morphology: Prospects for engineered, self-constructing anatomies, in: Journal of Anatomy 212, 707–719.10.1111/j.1469-7580.2008.00896.xSearch in Google Scholar

Davies, J. A. (2014), Life Unfolding, Oxford.Search in Google Scholar

Davies, J. A., u. Cachat, E. (2016), Synthetic biology meets tissue engineering, in: Biochemical Society Transactions 44.3, 696–701.10.1042/BST20150289Search in Google Scholar

Descartes, R. (1960), Abhandlung über die Methode, richtig zu denken und die Wahrheit in den Wissenschaften zu suchen [1637], hg. v. Gäbe, L., Hamburg.Search in Google Scholar

Eiseley, L. (1959), The Immense Journey, New York.Search in Google Scholar

Ellis, T. (2019), What is synthetic genomics anyway?, in: Biochemist 41.3, 6–9.10.1042/BIO04103006Search in Google Scholar

Elowitz, M. B., u. Leibler, S. (2000), A synthetic oscillatory network of transcriptional regulators, in: Nature 403.6767, 335–338.10.1038/35002125Search in Google Scholar

Elstner, M. (Hg.) (1997), Gentechnik, Ethik und Gesellschaft, Berlin u. Heidelberg.10.1007/978-3-642-60579-6Search in Google Scholar

Endy, D. (2005), Foundations for engineering biology, in: Nature 438, 449–453.10.1038/nature04342Search in Google Scholar

Engfer, H. J. (1982), Studien zur Entwicklung philosophischer Analysiskonzepte unter dem Einfluß mathematischer Methodenmodelle im 17. und frühen 18. Jahrhundert, Stuttgart.Search in Google Scholar

Euklid (1971), Die Elemente: Buch I–XIII, hg. v. Thaer, C., Darmstadt.Search in Google Scholar

Feynman, R. (1988), Tafelbild von 1988, Pasadena, Calif.Search in Google Scholar

Friedrich, K. (2013), Digital faces of synthetic biology, in: Studies in History and Philosophy of Biological and Biomedical Sciences 44.2, 217–224.10.1016/j.shpsc.2013.03.017Search in Google Scholar

Galdzicki, M., Clancy, K., Oberortner, E., et al. (2014), The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology, in: Nature Biotechnology 32, 545–550.10.1038/nbt.2891Search in Google Scholar

Genome Project-write (2020), URL: https://engineeringbiologycenter.org (12.9.2020).Search in Google Scholar

Gibson, D. G., Glass, J. I., Lartigue, C., et al. (2010), Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome, in: Science 329.5987, 52–56.10.1126/science.1190719Search in Google Scholar

Gilbert, W. (1986), The RNA world, in: Nature 319, 618.10.1038/319618a0Search in Google Scholar

Gramelsberger, G. (2013), The Simulation Approach in Synthetic Biology, in: Studies in History and Philosophy of Biological and Biomedical Sciences 44.2, 150–157.10.1016/j.shpsc.2013.03.010Search in Google Scholar

Gramelsberger, G., Bexte, P., u. Kogge, W. (Hg.) (2016), Synthesis. Zur Konjunktur eines philosophischen Begriffs in Wissenschaft und Technik, Bielefeld.Search in Google Scholar

Gramelsberger, G. (2016), Es schleimt, es lebt, es denkt – eine Rheologie des Medialen, in: Zeitschrift für Medien- und Kulturforschung – Medien der Natur 7.2, 155–167.10.28937/1000107559Search in Google Scholar

Gramelsberger, G. (2018), Continuous culture techniques as simulators for standard cells: Jacques Monod’s, Aron Novick’s and Leo Szilard’s quantitative approach to microbiology, in: History and Philosophy of Life Science 40.1, 23, DOI: 10.1007/s40656-017-0182-x.10.1007/s40656-017-0182-xSearch in Google Scholar

Gramelsberger, G. (2020), Synthetic Morphology – A vision of engineering biological form, in: Journal of the History of Biology 53, 295–309.10.1007/s10739-020-09601-wSearch in Google Scholar

Haeckel, E. (1868), Monographie der Moneren, in: Jenaische Zeitschrift für Medicin und Naturwissenschaft 4, 64–137.Search in Google Scholar

Haraway, D. (1997), Modest_Witness@Second_Millennium. FemaleMan©_Meets_ OncoMouse™, New York u. London.Search in Google Scholar

Herrera, A. L. (1897), Recueil des lois de la biologie generale, Mexiko-Stadt.Search in Google Scholar

Herrera, A. L. (1924), Biologia y Plasmogenia, Mexiko-Stadt.Search in Google Scholar

Herrera, A. L. (1942), A New Theory of the Origin and Nature of Life, in: Science 96.2479, 14.10.1126/science.96.2479.14Search in Google Scholar

Huxley, T. H. (1868), On Some Organisms Living at Great Depths in the North Atlantic Ocean, in: Quarterly Journal of Microscopical Science 8, 203–212.10.1242/jcs.s2-8.32.203Search in Google Scholar

iGEM (2020), International Genetically Engineered Machine, URL: http://igem.org (12.9.2020).Search in Google Scholar

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., u. Charpentier, E. (2012), A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, in: Science 337.6096, 816–821.10.1126/science.1225829Search in Google Scholar

Johnson, A. P., Cleaves, H. J., Dworkin, J. P., et al. (2008), The Miller volcanic spark discharge experiment, in: Science 322, 404.10.1126/science.1161527Search in Google Scholar

Jonas, H. (1979), Das Prinzip Verantwortung. Versuch einer Ethik für die technologische Gesellschaft, Frankfurt am Main.Search in Google Scholar

Karafyllis, N. C. (Hg.) (2003), Biofakte – Versuch über den Menschen zwischen Artefakt und Lebewesen, Paderborn.10.30965/9783969757871Search in Google Scholar

Knight, T. F. (2003), Idempotent Vector Design for Standard Assembly of Biobricks (M.I.T. Synthetic Biology Working Group Technical Reports), Cambridge, Mass.10.21236/ADA457791Search in Google Scholar

Knight, T. (2007), Draft Standard for BioBrick Biological Parts, URL: http://parts.igem.org/Help:Assembly_standard_10 (12.9.2020).Search in Google Scholar

Knight, T. F., Shetty, R. P., u. Endy, D. (2008), Engineering BioBrick vectors from BioBrick parts, in: Journal of Biological Engineering 2.5, 5, DOI: 10.1186/1754-1611-2-5.10.1186/1754-1611-2-5Search in Google Scholar

Knuuttila, T., u. Loettgers, A. (2013), Basic science through engineering? Synthetic modeling and the idea of biology-inspired engineering, in: Studies in History and Philosophy of Biological and Biomedical Sciences 44.2, 158–169.10.1016/j.shpsc.2013.03.011Search in Google Scholar

König, H., Frank, D., Heil, R., u. Coenen, C. (2013), Synthetic Genomics and Synthetic Biology Applications Between Hopes and Concerns, in: Current Genomics 14.1, 11–24.Search in Google Scholar

Kogge, W. (2017), Experimentelle Begriffsforschung. Philosophische Interventionen am Beispiel von Code, Information und Skript in der Molekularbiologie. Mit einer Abhandlung zu Wissenschaftstheorie nach Wittgenstein, Weilerswist.10.5771/9783845287379Search in Google Scholar

Krämer, S. (1991), Berechenbare Vernunft. Kalkül und Rationalisierung im 17. Jahrhundert, Berlin u. New York.10.1515/9783110847079Search in Google Scholar

Landecker, H. (2007), Culturing Life. How Cells Became Technologies, Cambridge, Mass.10.4159/9780674039902Search in Google Scholar

Leduc, S. (1910), Théorie physico-chimique de la vie et génération spontanée, Paris.10.5962/bhl.title.32591Search in Google Scholar

Leduc, S. (1912), La biologie synthétique, Paris.Search in Google Scholar

Lewens, T. (2002), Adaptationism and Engineering, in: Biology and Philosophy 17, 1–31.10.7551/mitpress/5172.003.0004Search in Google Scholar

Loeb, J. (1899), On the nature of the Process of Fertilization and the Artificial Production of Normal Larvae (Plutei) from Unfertilized Eggs of Sea Urchins, in: American Journal of Physiology 3, 135–138.10.1037/13684-011Search in Google Scholar

Loeb, J. (1912a), The mechanistic Conception of Life, in: Popular Science Monthly 80, 5–21.10.1037/12232-000Search in Google Scholar

Loeb, J. (1912b), The Mechanistic Conception of Life, Chicago.10.1037/12232-000Search in Google Scholar

Loeb, J., u. Schwalbe, E. (1906), Untersuchungen über künstliche Parthenogenese und das Wesen des Befruchtungsvorgangs, Leipzig.Search in Google Scholar

Lovell-Badge, R. (2019), CRISPR babies: a view from the centre of the storm, in: Development 146.3, DOI: 10.1242/dev.175778.10.1242/dev.175778Search in Google Scholar

Marliere, P. (2009), The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world, in: Systems and Synthetic Biology 3, 77, URL: https://doi.org/10.1007/s11693-009-9040-9 (12.9.2020).10.1007/s11693-009-9040-9Search in Google Scholar

Marlière, P., Patrouix, J., Döring, V., Herdewijn, P., Tricot, S., Cruveiller, S., Bouzon, M., u. Mutzel, R. (2011), Chemical Evolution of a Bacterium’s Genome, in: Angewandte Chemie 123, 7247–7252.10.1002/ange.201100535Search in Google Scholar

Miller, S. L. (1953), A Production of Amino Acids Under Possible Primitive Earth Conditions, in: Science 117, 528–529.10.1126/science.117.3046.528Search in Google Scholar

Miller, S. L., u. Urey, H. C. (1959), Organic Compound Synthesis on the Primitive Earth, in: Science 130.3370, 245–251.10.1126/science.130.3370.245Search in Google Scholar

Mills, D. R., Peterson, R. L., u. Spiegelman, S. (1967), An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule, in: Proceedings of the National Academy of Sciences of the United States of America 58.1, 217–224.10.1073/pnas.58.1.217Search in Google Scholar

N. N. (2012), Method of the Year 2011, in: Nature Methods 9.1, 1.10.1038/nmeth.1852Search in Google Scholar

Nordmann, A. (2006), Collapse of Distance: Epistemic Strategies of Science and Technoscience, in: Danish Yearbook of Philosophy 41, 7–34.10.1163/24689300_0410102Search in Google Scholar

Nordmann, A. (2017), The Demise of Systems Thinking: A Tale of Two Sciences and One Technoscience of Complexity, in: Wernecke, W., Pietsch, J., u. Ott, M. (Hg.), Berechenbarkeit der Welt?, Heidelberg, 435–451.10.1007/978-3-658-12153-2_21Search in Google Scholar

Onken, L. (1805), Die Zeugung, Bamberg u. Würzburg.10.5962/bhl.title.51608Search in Google Scholar

Pauly, P. (1987), Controlling Life: Jacques Loeb and the Engineering Ideal in Biology, New York.Search in Google Scholar

Powner, M. W., Gerland, B., u. Sutherland, J. D. (2009), Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions, in: Nature 459.7244, 239–242.10.1038/nature08013Search in Google Scholar

Purkyně, J. E. (1879), Gesammelte Schriften, Leipzig.Search in Google Scholar

Ray, T. S. (1993), An Evolutionary Approach to Synthetic Biology: Zen and the Art of Creating Life, in: Artificial Life 1.1, 195–226.10.1007/978-3-642-18965-4_19Search in Google Scholar

Registry (2020), Registry of Standard Biological Parts, URL: http://parts.igem.org (12.9.2020).Search in Google Scholar

Rheinberger, H.-J., u. Müller-Wille, S. (2009), Vererbung. Geschichte und Kultur eines biologischen Konzepts, Frankfurt am Main.Search in Google Scholar

Schleiden, M. (1838), Beiträge zur Phytogenesis, in: Archiv für Anatomie, Physiologie und wissenschaftliche Medicin, 137–176.Search in Google Scholar

Schrödinger, E. (1944), What is life? The Physical Aspect of the Living Cell, Cambridge, Mass.Search in Google Scholar

Schuster, P., u. Eigen, M. (1979), The hypercycle, a principle of natural self-organization, Berlin.Search in Google Scholar

Schwann, T. (1839), Mikroskopische Untersuchungen über die Uebereinstimmung in der Struktur und dem Wachsthum der Thiere und Pflanzen, Berlin.Search in Google Scholar

Schwille, P. (2011), Bottom-Up Synthetic Biology: Engineering in a Tinkerer’s World, in: Science 333, 1252–1254.10.1126/science.1211701Search in Google Scholar

Sinclair, B. (1969), At the Turn of a Screw: William Sellers, the Franklin Institute, and a Standard American Thread, in: Technology and Culture 10.1, 20–34.10.2307/3102001Search in Google Scholar

Smith, J. M. (2000), The Concept of Information in Biology, in: Philosophy of Science 67, 177–194.10.1086/392768Search in Google Scholar

Synthetic Yeast 2.0 (2020), URL: http://syntheticyeast.org/ (Zugriff: 17.2.2020).Search in Google Scholar

Tomita, M. (2001), Towards Computer-aided Design (CAD) of useful microorganisms, in: Bioinformatics 17, 1091–1092.10.1093/bioinformatics/17.12.1091Search in Google Scholar

Vehlken, S. (2012), Zootechnologien. Eine Mediengeschichte der Schwarmforschung, Zürich u. Berlin.Search in Google Scholar

Walden, P. (1928), Die Bedeutung der Wöhlerschen Harnstoffsynthese, in: Die Naturwissenschaften 16, 835–849.10.1007/BF01451626Search in Google Scholar

Wang, Q., Parrish, A. R., u. Wang, L. (2009), Expanding the Genetic Code for Biological Studies, in: Chemical Biology 16.3, 323–336.10.1016/j.chembiol.2009.03.001Search in Google Scholar

Woese, C. (1967), The Genetic Code, New York.Search in Google Scholar

Published Online: 2020-12-09
Published in Print: 2020-12-16

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 16.5.2024 from https://www.degruyter.com/document/doi/10.1515/dzph-2020-0051/html
Scroll to top button