Skip to main content

Quantum Observer, Information Theory and Kolmogorov Complexity

  • Chapter
  • First Online:
New Challenges to Philosophy of Science

Part of the book series: The Philosophy of Science in a European Perspective ((PSEP,volume 4))

Abstract

The theory itself does not tell us which properties are sufficient for a system to count as a quantum mechanical observer. Thus, it remains an open problem to find a suitable language for characterizing observation. We propose an information-theoretic definition of observer, leading to a mathematical criterion of objectivity using the formalism of Kolmogorov complexity. We also suggest an experimental test of the hypothesis that any system, even much smaller than a human being, can be a quantum mechanical observer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bastin, T., (Ed.), 1971, Quantum Theory and Beyond. Cambridge: Cambridge University Press.

    Google Scholar 

  2. Bohm, D., 1971, “On Bohr’s Views Concerning the Quantum Theory”, in: T. Bastin (Ed.), 1971, p. 33.

    Google Scholar 

  3. Bohr, N., 1934, Atomic Theory and the Description of Nature. Cambridge: Cambridge University Press. Quoted in [?].

    Google Scholar 

  4. Brudno, A., 1978, “The Complexity of the Trajectories of a Dynamical System”, in: Russian Mathematical Surveys 33, 1, pp. 197–198.

    Google Scholar 

  5. Brudno, A., 1983, “Entropy and the Complexity of the Trajectories of a Dynamical System”, in: Trans. Moscow Math. Soc., 2, pp. 157–161.

    Google Scholar 

  6. Einstein, A., Rosen, N., and Podolsky, B., 1935, “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”, in: Physical Review 47, pp. 777–780.

    Google Scholar 

  7. Eletskii, A. V., and Smirnov, B. M., 1995, “Fullerenes and Carbon Structures”, in: Physics-Uspekhi 38, 9, pp. 935–964.

    Google Scholar 

  8. Erez, N., Gordon, G., Nest, M., and Kurizki, G., 2008, “Thermodynamic Control by Frequent Quantum Measurements”, in: Nature 452, pp. 724–727.

    Google Scholar 

  9. Everett, H., 1957, “‘Relative State’ Formulation of Quantum Mechanics”, in: Review of Modern Physics 29, pp. 454–462.

    Google Scholar 

  10. Friedman, M., 2001, Dynamics of Reason. Stanford: CSLI Publications.

    Google Scholar 

  11. George, A. (Ed.), 1953, Louis de Broglie, physicien et penseur. Paris: Albin Michel.

    Google Scholar 

  12. Jammer, M., 1974, The Philosophy of Quantum Mechanics. New York: John Wiley and Sons.

    Google Scholar 

  13. Kolmogorov, A., 1965, “Three Approaches to the Definition of the Concept ‘Quantity of Information”’, in: Probl. Inform. Transm. 1, 1, pp. 3–7.

    Google Scholar 

  14. Landau L., and Lifshitz, E., 1977, Quantum Mechanics. Pergamon Press.

    Google Scholar 

  15. Landauer, R., 1961, “Irreversibility and Heat Generation in the Computing Process”, in: IBM Journal of Research and Development 5, pp. 183–191.

    Google Scholar 

  16. London, F., and Bauer, E., 1939, La théorie de l’observation en mécanique quantique. Paris: Hermann.

    Google Scholar 

  17. Lykke K. R., and Wurz, P., 1992, “Direct Detection of Neutral Products from Photodissociated C60”, in: Journal of Physical Chemistry 96, pp. 3191–3193.

    Google Scholar 

  18. Peres, A., 1986, “When Is a Quantum Measurement?”, in: American Journal of Physics 54, 8, pp. 688–692.

    Google Scholar 

  19. Rovelli, C., 1996, “Relational Quantum Mechanics”, in: International Journal of Theoretical Physics 35, p. 1637.

    Google Scholar 

  20. von Neumann, J., 1932, Mathematische Gründlagen der Quantenmechanik. Berlin: Springer.

    Google Scholar 

  21. Wigner, E., 1961, “Remarks on the Mind-Body Question”, in: I. Good (Ed.), The Scientist Speculates, London: Heinemann, pp. 284–302.

    Google Scholar 

  22. Wigner, E., 1983, “Interpretation of Quantum Mechanics. Lectures Given in the Physics Department of Princeton University in 1976”, in: J. A. Wheeler and W. Zurek (Eds.), Quantum Theory and Measurement. Princeton: Princeton University Press, pp. 260–314.

    Google Scholar 

  23. Zurek, W., 1989a, “Algorithmic Randomness and Physical Entropy”, in: Physical Review A 40, pp. 4731–4751.

    Google Scholar 

  24. Zurek, W., 1989b, “Thermodynamic Cost of Computation, Algorithmic Complexity and the Information Metric”, in: Nature 341, pp. 119–124.

    Google Scholar 

  25. Zurek, W., 1998, “Decoherence, Chaos, Quantum-Classical Correspondence, and the Algorithmic Arrow of Time”, in: Physica Scripta, T76, 1998, pp. 186–198.

    Google Scholar 

  26. Zvonkin, A., and Levin, L., 1970, “The Complexity of Finite Objects and the Development of the Concepts of Information and Randomness by Means of the Theory of Algorithms”, in: Russian Mathematical Surveys 25, 6, pp. 83-124.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Vasily Ogryzko for stimulating discussions and to Časlav Brukner, Markus Aspelmeyer, Ognyan Oreshkov and Anton Zeilinger for their remarks and hospitality at the Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Grinbaum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grinbaum, A. (2013). Quantum Observer, Information Theory and Kolmogorov Complexity. In: Andersen, H., Dieks, D., Gonzalez, W., Uebel, T., Wheeler, G. (eds) New Challenges to Philosophy of Science. The Philosophy of Science in a European Perspective, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5845-2_6

Download citation

Publish with us

Policies and ethics