Skip to main content
Log in

An Evolutionary Scenario For The Origin Of Pentaradial Echinoderms—Implications From The Hydraulic Principles Of Form Determination

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The early evolutionary history of echinoderms was reconstructed on the basis of structural-functional considerations and application of the quasi-engineering approach of ‘Konstruktions-Morphologie’. According to the presented evolutionary scenario, a bilaterally symmetrical ancestor, such as an enteropneust-like organism, became gradually modified into a pentaradial echinoderm by passing through an intermediate pterobranch-like stage. The arms of a pentaradial echinoderm are identified as hydraulic outgrowths from the central coelomic cavity of the bilateral ancestor which developed due to a shortening of the body in length but widening in the diameter. The resulting pentaradial symmetry is a consequence of mechanical laws that dictate minimal contact surface areas among hydraulic pneumatic entities. These developed in the coelomic cavity (metacoel) in the bilaterally symmetrical ancestor, when from the already U-shaped mesentery with the intestinal tract two additional U-shaped bows developed directly or subsequently. During the subsequent development tensile chords of the mesentery ‘sewed’ the gut with the body wall first in three and secondly in five ‘seams’. During the direct development five ‘seams’ between tensile chords and body wall developed straightly. These internal tensile chords subdivide the body coelom into five hydraulic subsystems (‘pneus’), which eventually arrange in a pentaradial pattern. The body could then enlarge only between the tensile chords, which means that five hydraulic bulges developed. These bulges initially supported the tentacles and finally each of them enclosed the tentacle until only the feather-like appendages of the tentacles projected over the surface. The tentacles with their feathers were transformedinto the ambulacral system, and the bulges become the arms. These morphological transformations were accompanied and partly determined by specific histological modifications, such as the development of mutable connective tissues and skeletal elements that fused to ossicles and provided shape stabilization in form of a calcareous skeleton in the body wall. The organism resulted was an ancestral echinoderm (‘Ur-Echinoderm’) with an enlarged metacoel, stabilized by hydraulic pressure working againsta capsule of mutable connective tissue, skeletal elements and longitudinal muscles. In regard to these reconstructions, the body structure of echinoderms can be understood as a hydraulic skeletal capsule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adoutte, A., G. Balavoine, N. Lartillot and de R. Rosa (1999). The end of the intermediate taxa? Trends in Genetics 15: 104–108.

    Article  Google Scholar 

  • Adoutte, A., G. Balavoine, N. Lartillot, O. Lespinet, B. Prudhomme and de R. Rosa (2000). The new animal phylogeny: Reliability and implications. Proceedings of the National Academie of Science, USA 97: 4453–4456.

  • Balavoine, G. and A. Adoutte (2003). The Segmented Urbilateria: A Testable Scenario. Integrative and Comparative Biology 43: 137–147.

    Google Scholar 

  • Balavoine, G., de R. Rosa, and A. Adoutte (2002). Hox clusters and bilaterian phylogeny. Molecular Phylogenetics and Evolution 24: 366–373.

    Article  Google Scholar 

  • Beaver, H.H., K.E. Caster, J.W. Durham, R.O. Fay, H.B. Fell, R.V.B.M.D. Kesling, J.R.C. Moore, G. Ubaghs and J. Wanner (1967a). Treatise on Invertebrate Paleontology—Part S: Echinodermata 1, Volume 1. The Geological Society of America, Inc. & The University of Kansas. Kansas, Lawrence.

    Google Scholar 

  • Beaver, H.H., K.E. Caster, J.W. Durham, R.O. Fay, H.B. Fell, R. V. Kesling, D.B. Macurda, J.R.C. Moore, G. Ubaghs and J. Wanner (1967b). Treatise on Invertebrate Paleontology—Part S: Echinodermata 1, Volume 2. The Geological Society of America, Inc. & The University of Kansas. Kansas, Lawrence.

    Google Scholar 

  • Boardmann, R.S., A.H. Cheetham and A.J. Rowell (1987). Fossil Invertebrates. Blackwell. Palo Alto, Oxford, London, Edinburgh, Boston, Melbourne.

    Google Scholar 

  • Bock, W.J. (1991). Explanations in Konstruktionsmorphologie and evolutionary morphology. In: N. Schmidt-Kittler and K.P. Vogel (Eds.), Constructional morphology and evolution, Springer, Heidelberg, pp. 9–29.

    Google Scholar 

  • Bonik, K. and W.F. Gutmann (1978). Die Biotechnik der Doppel-Hydraulik (Chorda-Sklerocoelen-Myomeren-System) bei den Acraniern. Senckenbergiana biologica 58: 275–286.

    Google Scholar 

  • Bonik, K., W.F. Gutmann and D.S. Peters (1977). Optimierung und Ökonomisierung im Kontext der Evolutionstheorie und phylogenetischer Rekonstruktionen. Acta Anatomica 26: 75–119.

    Google Scholar 

  • Bromham, L. (2003). What can DNA Tell us About the Cambrian Explosion. Integrative and Comparative Biology 43: 148–156.

    Google Scholar 

  • Bromham, L.D. and B.M. Degnan (1999). Hemichordates and deuterostome evolution: robust molecular phylogenetic support for a hemichordate+echinoderm clade. Evolution and Development 1: 166–171.

    Article  Google Scholar 

  • Bulman, O.M.B. (1955). Graptolithina, with sections on Enteropneusta and Pterobranchia, Part V of Treatise on invertebrate paleontology, Moore, R.C. (Ed). xvii.

  • Cameron, C.B., J.R. Garey and B.J. Swalla (2000). Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proceedings of the National Academie of Science, USA 97: 4469–4474.

  • Clark, R.B. (1964). Dynamics in the metazoan evolution. The origin of the coelom and segments. Clarendon. Oxford.

    Google Scholar 

  • Dafni, J. (1984). Effect of mechanical stress on the calcification pattern in regular echinoid skeletal plates. Proceedings of the 5th International Echinoderm Conference, pp. 233–236.

  • David, B. and R. Mooi (1998). Major events in the evolution of echinoderms viewed by the light of embryology. In: R. Mooi and M. Telford (Eds.), Echinoderms: San Francisco, Balkema, Rotterdam, pp. 21–28.

    Google Scholar 

  • David, B. and R. Mooi (1999). Comprendre les échinodermes: la contribution du modèle extraxial-axial. Bulletin de la Societée géologique de France 170: 91–101.

    Google Scholar 

  • Eaton, T.H. (1970). The stem-tail problem and the ancestry of chordates. Journal of Paleontology 44: 969–979.

    Google Scholar 

  • Erlinger, R., U. Welsch and J.E. Scott (1993). Ultrastructural and biochemical observations on proteoglycans and collagen in the mutable connective tissue of the feather star Antedon bifida (Echinodermata, Crinoidea). Journal of Anatomy 183: 1–11.

    Google Scholar 

  • Furlong, R.F. and P.W.H. Holland (2002). Bayesian phylogenetic analysis supports monophyly of ambulacraria and of cyclostomes. Zoological Science 19: 593–599.

    Article  Google Scholar 

  • Garstang, W. (1894). Preliminary note on a new theory of the phylogeny of Chordata. Zoologischer Anzeiger 27: 122–125.

    Google Scholar 

  • Gil Cid, D., F. Arroyo, R. Lara and A. Torices (2003). Biodiversity and biostratigraphy of Spanish Cambrian-Ordovician echinoderms. In J.-P. Féral and B. David (Eds.), Echinoderm Research 2001, Balkema, Lisse, Abingdon, Exton, Tokyo, pp. 77–85.

  • Gislén, T. (1930). Affinities between the echinodermata, enteropneusta and chordonia. Zoologiska bidrag fran Uppsala 12: 199–304.

    Google Scholar 

  • Grobben, K. (1923). Theoretische Erörterungen betreffend die Phylogenetische Ableitung der Echinodermen. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse, Abteilung I 132: 263–290.

    Google Scholar 

  • Gudo, M. (1997). Ist die Konstruktionsmorphologie ein aktualistisches Prinzip der Paläontologie? Courier Forschungsinstitut Senckenberg 201: 145–160.

    Google Scholar 

  • Gudo, M. (2002). The development of the critical theory of evolution: The scientific career of Wolfgang F. Gutmann. Theory of Biosciences 121: 101–137.

    Google Scholar 

  • Gudo, M. (2004). Die ‘hydraulische Skelettkapsel’ der Stachelhäuter (Echinodermen). Natur und Museum 134: 174–188.

    Google Scholar 

  • Gudo, M. (2005). Körperkonstruktion und evolutionäre Trends fossiler Echinodermen (Homalozoa, Bastoidea, Edrioasteroidea). Senckenbergiana lethaea 85(1): 39–62.

    Google Scholar 

  • Gudo, M. and F. Dettmann (2005). Evolutionsmodelle für die Entstehung der Echinodermen. Paläontologische Zeitschrift 79(3): 305–338.

    Google Scholar 

  • Guntau, M. (1993). Theorie und Methode des Aktualismus. Der historische Vergleich in der Naturforschung. In M. Weingarten and W.F. Gutmann (Eds.), Geschichte und Theorie des Vergleichs in den Biowissenschaften, Kramer, Frankfurt am Main, pp. 175–186.

    Google Scholar 

  • Gutmann, W.F. (1969). Acranier und Hemichordaten, ein Seitenast der Chordaten. Zoologischer Anzeiger 182: 1–26.

    Google Scholar 

  • Gutmann, W.F. (1970). Die Entstehung des Muskelapparates der Hemichordaten. Zeitschrift für Zoologische Systematik und Evolutionsforschung 8: 139–154.

    Google Scholar 

  • Gutmann, W.F. (1971). Zu Bau und Leistung von Tierkonstruktionen 14. Was ist urtümlich an Branchiostoma? Natur und Museum 101: 340–356.

    Google Scholar 

  • Gutmann, W.F. (1972). Die Hydroskelett-Theorie. Aufsätze und Reden der Senckenbergischen Naturforschenden Gesellschaft 21: 1–91.

    Google Scholar 

  • Gutmann, W.F. (1973). Ein Paradigma für die phylogenetische Rekonstruktion—Die Entstehung der Hemichordaten. Courier Forschungsinstitut Senckenberg 9: 1–28.

    Google Scholar 

  • Gutmann, W.F. (1981). Relationships between invertebrate phyla based on functional-mechanical analysis of the hydrostatic skeleton. American Zoologist 21: 63–81.

    Google Scholar 

  • Gutmann, W. F. (1985). The hydraulic principles of the chordate and vertebrate bauplan. Fortschritte der Zoologie 30: 23–26.

    Google Scholar 

  • Gutmann, W. F. (1988). The hydraulic principle. American Zoologist 28: 257–266.

    Google Scholar 

  • Gutmann, W. F. (1991). Constructional principles and the quasi-experimental approach to organisms. In N. Schmidt-Kittler and K.P. Vogel (Eds.), Constructional morphology and evolution, Springer, Berlin, Heidelberg, New York, Tokyo, pp. 91–112.

    Google Scholar 

  • Gutmann, W. F. (1993). Organismic machines—The hydraulic principle and the evolution of living constructions. In K. Kull and T. Tiivel (Eds.), Lectures in theoretical biology—The Second Stage, Estonian Academy of Sciences, Tallinn, pp. 171–188.

    Google Scholar 

  • Gutmann, W.F. and K. Bonik (1979). Detaillierung des Acranier-und Enteropneusten-Modells. Senckenbergiana biologica 59: 325–363.

    Google Scholar 

  • Halanych, K.M. (1995). The phylogenetic position of the pterobranch hemichordates based on 18S rDNA sequence data. Molecular Phylogenetics and Evolution 4: 72–76.

    Article  Google Scholar 

  • Hargittai, I. and M. Hargittai (1996). Über die Anwendbarkeit des Symmetrie-Konzeptes in der modernen chemischen Forschung. In W. Hahn and P. Waibl (Eds.), Evolutionäre Symmetrietheorie—Selbstorganisation und dynamische Systeme, Hirzel, Stuttgart, pp. 231–240.

    Google Scholar 

  • Harrison, F.W. and E.E. Ruppert (1997). Microscopic anatomy of invertebrates, Vol. 15, Hemichordata, chaetognatha, and the invertebrate chordates. Wiley-Liss. New York; Chichester.

    Google Scholar 

  • Hart, M.W. (2002). Life history evolution and comparative developmental biology of echinoderms. Evolution & Development 4: 62–71.

    Google Scholar 

  • Haude, R. (1993). Fossil holothurians: Constructional morphology of the sea cucumber, and the origin of the calcerous ring. Proceedings of the 8th International Echinoderm Conference, pp. 517–522.

  • Haude, R. (2002). Origin of holothurians (Echinodermata) derived by constructional morphology. Mitteilungen des Zoologischen Museums Berlin, Geowissenschaftliche Reihe 5: 141–153.

    Google Scholar 

  • Hill, R.B. (2001). Role of Ca2+ in excitation–contraction coupling in echinoderm muscle: comparison with role in other tissues. The Journal of Experimental Biology 204: 897–908.

    Google Scholar 

  • Hotchkiss, F.H.C. (1997). A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24: 200–214.

    Google Scholar 

  • Hotchkiss, F.H.C. (1998). Discussion on pentamerism: The five-part pattern of Stromatocystis, Asterozoa, and Echinozoa. In R. Mooi and M. Telford (Eds.), Echinoderms: San Franzisco, Balkema, Rotterdam, pp. 37–42.

    Google Scholar 

  • Huxley, J. (1957). The three types of evolutionary process. Nature 180: 454–455.

    Google Scholar 

  • Hyman, L.H. (1955). The Invertebrates: Echinodermata. McGraw Hill Book Comp. New York.

    Google Scholar 

  • Janies, D. (2001). Phylogenetic relationships of extant echinoderm classes. Canadian Journal of Zoology 79: 1232–1250.

    Article  Google Scholar 

  • Jefferies, R.P.S. (1991). Two types of bilateral symmetry in the Metazoa: chordate and bilaterian. Ciba Found Symposium 162: 94–120 & 121–127.

    Google Scholar 

  • Jefferies, R.P.S., N.A. Brown and P.E.J. Daley (1996). The early phylogeny of chordates and echinoderms and the origin of chordate left-right asymmetry and bilateral symmetry. Acta Zoologica 77: 101–122.

    Article  Google Scholar 

  • Johnson, A.S., O. Ellers, J. Lemire, M. Minor and H.A. Leddy (2002). Sutural loosening and skeletal flexibility during growth: determination of drop-like shapes in sea urchins. Proceedings of the Royal Society of London. Series B: Biological Sciences 269: 215–220.

  • Jollie, M. (1962). Chordate Morphology. Chapman & Hall. London.

    Google Scholar 

  • Kerr, A.M. and J. Kim (1999). Bi-Penta-Bi-Decaradial Symmetry: A Review of Evolutionary and Developmental Trends in Holothuroidea (Echinodermata). Journal of Experimental Zoology 285: 93–103.

    Article  Google Scholar 

  • Landeira-Fernandez, A. (2001). Ca2+ transport by the sarcoplasmic reticulum Ca2+ -ATPase in sea cucumber (Ludwigothurea grisea) muscle. The Journal of Experimental Biology 204: 909–921.

    Google Scholar 

  • Lovén, S. (1874). Études sur les echnoidées. Kongelige Svenska Vetenskaps-Akademiens Handlingar (n. ser.) 11: 1–91 + pls. 1–53.

  • Lowe, C.J. and G.A. Wray (1997). Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389: 718–21.

    Google Scholar 

  • Mallatt, J. and C.J. Winchell (2002). Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Molecular Biology and Evolution 19: 289–301.

    Google Scholar 

  • Mayer, G. and T. Bartholomaeus (2003). Ultrastructure of the stomochord and the heart-glomerulus complex in Rhabdopleura compacta (Pterobranchia): phylogenetic implications. Zoomorphology 122: 125–133.

    Article  Google Scholar 

  • McCain, R.E. and R.D. McClay (1994). The establishment of bilateral asymmetry in sea urchin embryos. Development 120: 395–404.

    Google Scholar 

  • Metschnikoff, V.E. (1881). Über die systematische Stellung von Balanoglossus. Zoologischer Anzeiger 4: 139–157.

    Google Scholar 

  • Morris, V.B. (1999). Bilateral homologues in echinoderms and a predictive model of the bilateral echinoderm ancestor. Biological Journal of the Linnean Society 66: 293–303.

    Article  Google Scholar 

  • Müller, G.B. (2003). Embryonic motility: environmental influences and evolutionary innovation. Evolution & Development 5: 56–60.

    Google Scholar 

  • Nachtigall, W. and U. Philippi (1996). Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study. Zoomorphology 116: 35–50.

    Google Scholar 

  • Newell, G.E. (1951). The homology of the stomochord of the Enteropneusta. Proceedings of the Zoological Society, pp. 741–746.

  • Nezlin, L.P. (2000). Tornaria of hemichordates and other dipleurula-type larvae: a comparison. Journal for Zoological Systematics and Evolutionary Research 38: 149–156.

    Google Scholar 

  • Nichols, D. (1962). Echinoderms. Hutchinson. London.

    Google Scholar 

  • Nichols, D. (1967). The origin of echinoderms. Symposia of the Zoological Society of London 20: 209–229.

  • Otto, F. (1977). Wachsende und sich teilende Pneus. Mitteilungen des Institutes für leichte Flächentragwerke der Universität Stuttgart (IL) 9: 22–97.

    Google Scholar 

  • Pantin, C.F.A. (1951). Organic design. Advancement of Science 8: 138–150.

    Google Scholar 

  • Peters, D.S. (2002). Anagenesis of Early Birds reconsidered. Senckenbergiana lethaea 82: 347–354.

    Google Scholar 

  • Peterson, K.J. (2004). Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. Molecular Phylogenetics and Evolution 31: 1208–1215.

    Article  Google Scholar 

  • Peterson, K.J., C. Arenas-Mena and E.H. Davidson (2000). The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evolution and Development 2: 93–101.

    Article  Google Scholar 

  • Peterson, K. J. and D.J. Eernisse (2001). Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences. Evolution & Development 3: 170–205.

    Article  Google Scholar 

  • Schmidt-Kittler, N. and K.P. Vogel (1991). Constructional Morphology and Evolution. Springer. Berlin, Heidelberg, New York, Tokyo.

    Google Scholar 

  • Seilacher, A. (1973). Fabricational noise in adaptive morphology. Systematic Zoology 22: 451–465.

    Google Scholar 

  • Shu, D.G., S.C. Morris, J. Han, Z.F. Zhang and J.N. Liu (2004). Ancestral echinoderms from the Chengjiang deposits of China. Nature 430: 422–428.

    Google Scholar 

  • Smith, M.J., A. Arndt, S. Gorski and E. Fajber (1993). The phylogeny of echinoderm classes based on mitochondrial gene arrangements. Journal of Molecular Evolution 36: 545–54.

    Article  Google Scholar 

  • Takacs, C.M., V.N. Moy and K.J. Peterson (2002). Testing putative hemichordate homologues of the chordate dorsal nervous system and endostyle: expression of NK2.1 (TTF-1) in the acorn worm Ptychodera flava (Hemichordata, Ptychoderidae). Evolution & Development 4: 405–417.

    Google Scholar 

  • Taylor, J.R. and W.M. Kier (2003). Switching skeletons: hydrostatic support in molting crabs. Science 301: 209–210.

    Article  Google Scholar 

  • Trotter, J.A., K.E. Kadler and D.F. Holmes (2000). Echinoderm Collagen Fibrils Grow by Surface Nucleation-and-Propagation from Both Centers and Ends. journal of molecular biology 300: 531–540.

    Article  Google Scholar 

  • Trotter, J.A., F.A. Thurmond and T.J. Koob (1994). Molecular structure and functional morphology of echinoderm collagen fibrils. Cell & Tissue Research 275: 451–458.

    Google Scholar 

  • Turbeville, J.M., J.R. Schulz and R.A. Raff (1994). Deuterostome phylogeny and the sister group of the chordates: evidence from molecules and morphology. Molecular Biology and Evolution 11:648–655.

    Google Scholar 

  • Vogel, K. (1979). Efficiency of biological constructions and its relation to selection and rate of evolution (general remarks). Palaeogeography, Palaeoclimatology, Palaeoecology 28: 315–319.

    Article  Google Scholar 

  • Vogel, K.P. (1989a). Constructional morphology and the reconstruction of phylogeny. Abhandlungen des Naturwissenschaftlichen Vereins 28:255–264.

    Google Scholar 

  • Vogel, K.P. (1989b). Konstruktionsmorphologie und Rekonstruktion der Stammesgeschichte, K. Edlinger (Ed.), Form und Funktion Ihre stammesgeschichtlichen Grundlagen, WUV, Wien.

    Google Scholar 

  • Vogel, K.P. (1991a). Concepts of Constructional Morphology, N. Schmidt-Kittler and K. Vogel (Eds.), Constructional Morphology and Evolution, Heidelberg, 55–68.

  • Vogel, K.P. (1991b). Konstruktionsmorphologie: Ein Schlüssel zum Verständnis der Biologischen Evolution. Sitzungsberichte der wissenschaftlichen Gesellschaft an der Johann Wolfgang Goethe—Universität Frankfurt am Main 28: 1–56.

    Google Scholar 

  • Vogel, K.P. and W.F. Gutmann (1981). Zur Entstehung von Metazoen-Skeletten an der Wende von Präkambrium zum Kambrium. Festschrift der wissenschaftlichen Gesellschaft der Johann Wolfgang Goethe—Universität Frankfurt am Main: 517–537.

  • Vogel, K.P. and W.F. Gutmann (1988). Protist skeletons — biomechanical preconditions and constructional utilization. Senckenbergiana lethaea 69: 171–188.

    Google Scholar 

  • Vogel, K.P. and W.F. Gutmann (1989). Organismic Autonomy in Biomineralization Processes. In R.E. Crick (Ed.), Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals, Plenum, New York, pp. 45–56.

    Google Scholar 

  • Wada, H. and N. Satoh (1994). Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. Journal of Molecular Evolution 38: 41–49.

    Article  Google Scholar 

  • Welsch, U. and T. Heinzeller (1994). Crinoidea. In Harrison, F.W. and E.E. Rupper (Eds.), Microscopic Anatomy of Invertebrates, Wiley, New York, pp. 9–148.

    Google Scholar 

  • Winchell, C.J., J. Sullivan, C.B. Cameron, B.J. Swalla and J. Mallatt (2002). Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Molecular Biology and Evolution 19: 762–776.

    Google Scholar 

  • Wray, G.A. (1997). Echinoderms, S.F. Gilbert and A.M. Raunio (Eds.), Embryology: Constructing the Organism, Sinauer, Sunderland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gudo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudo, M. An Evolutionary Scenario For The Origin Of Pentaradial Echinoderms—Implications From The Hydraulic Principles Of Form Determination. Acta Biotheor 53, 191–216 (2005). https://doi.org/10.1007/s10441-005-2528-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-005-2528-0

Key Words

Navigation