Skip to main content

Advertisement

Log in

A Computational Model of the Circulating Renin-Angiotensin System and Blood Pressure Regulation

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The renin-angiotensin system (RAS) is critical in sodium and blood pressure (BP) regulation, and in cardiovascular-renal (CVR) diseases and therapeutics. As a contribution to SAPHIR project, we present a realistic computer model of renin production and circulating RAS, integrated into Guyton’s circulatory model (GCM). Juxtaglomerular apparatus, JGA, and Plasma modules were implemented in C ++/M2SL (Multi-formalism Multi-resolution Simulation Library) for fusion with GCM. Matlab© optimization toolboxes were used for parameter identification. In JGA, renin production and granular cells recruitment (GCR) are controlled by perfusion pressure (PP), macula densa (MD), angiotensin II (Ang II), and renal sympathetic activity (RSNA). In Plasma, renin and ACE (angiotensin-converting enzyme) activities are integrated to yield Ang I and II. Model vs. data deviation is given as normalized root mean squared error (nRMSE; n points). Identification: JGA and Plasma parameters were identified against selected experimental data. After fusion with GCM: (1) GCR parameters were identified against Laragh’s PRA-natriuresis nomogram; (2) Renin production parameters were identified against two sets of data ([renin] transients vs. ACE or renin inhibition). Finally, GCR parameters were re-identified vs. Laragh’s nomogram (nRMSE 8%, n = 9). Validation: (1) model BP, PRA and [Ang II] are within reported ranges, and respond physiologically to sodium intake; (2) short-term Ang II infusion induces reported rise in BP and PRA. The modeled circulating RAS, in interaction with an integrated CVR, exhibits a realistic response to BP control maneuvers. This construction will allow for modelling hypertensive and CVR patients, including salt-sensitivity, polymorphisms, and pharmacotherapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACE:

Angiotensin converting enzyme, ACE-1 (EC 3.4.15.1)

AGT:

Angiotensinogen

Ang I (/II):

Angiotensin I (/II)

ATP:

Adenosine triphosphate

AT1-R:

Ang II type 1 receptor

BRENDA:

BRaunschweig ENzyme DAtabase (http://www.brenda-enzymes.org/)

cAMP:

Cyclic adenosine monophosphate

GC:

Renin-secreting granular cells

GCM:

Guyton’s circulatory model

JGA:

Juxta-glomerular apparatus

MAP:

Mean arterial pressure

MD:

Macula densa

M2SL:

Multi-formalism Multi-resolution Simulation Library

NID:

Na input rate variable in Guyton’s circulatory model

PP:

Perfusion pressure

PRA:

Plasma renin activity

RAS:

Renin-angiotensin system

RAAS:

Renin-angiotensin-aldosterone system

Renin:

(EC 3.4.23.15)

RSNA:

Renal sympathetic nerve activity

SAPHIR [project]:

A systems approach for physiological integration of renal, cardiac and respiratory functions

References

  • Abitbol CL, Ingelfinger JR (2009) Nephron mass and cardiovascular and renal disease risks. Semin Nephrol 29(4):445–454

    Article  Google Scholar 

  • Abram SR, Hodnett BL, Summers RL, Coleman TG, Hester RL (2007) Quantitative circulatory physiology: an integrative mathematical model of human physiology for medical education. Adv Physiol Educ 31(2):202–210

    Article  Google Scholar 

  • Al-Merani SA, Brooks DP, Chapman BJ, Munday KA (1978) The half-lives of angiotensin II, angiotensin II-amide, angiotensin III, Sar1-Ala8-angiotensin II and renin in the circulatory system of the rat. J Physiol 278:471–490

    Google Scholar 

  • Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13:9–20

    Google Scholar 

  • Boddi M, Poggesi L, Coppo M, Zarone N, Sacchi S, Tania C, Neri Serneri GG (1998) Human vascular renin-angiotensin system and its functional changes in relation to different sodium intakes. Hypertension 31:836–842

    Google Scholar 

  • Briggs JP, Lorenz JN, Weihprecht H, Schnermann J (1991) Macula densa control of renin secretion. Renal Physiol Biochem 14:164–174

    Google Scholar 

  • Brown MJ (2007) Renin: friend or foe? Heart (British Cardiac Society) 93:1026–1033

    Google Scholar 

  • Brown MJ, Cruickshank JK, Dominiczak AF, MacGregor GA, Poulter NR, Russell GI, Thom S, Williams B (2003) Better blood pressure control: how to combine drugs. J Hum Hypertens 17(2):81–86

    Article  Google Scholar 

  • Campbell DJ, Nussberger J, Stowasser M, Danser AH, Morganti A, Frandsen E, Menard J (2009) Activity assays and immunoassays for plasma Renin and prorenin: information provided and precautions necessary for accurate measurement. Clin Chem 55(5):867–877

    Article  Google Scholar 

  • Catt KJ, Cran E, Zimmet PZ, Best JB, Cain MD, Coghlan JP (1971) Angiotensin II blood-levels in human hypertension. Lancet 1(7697):459–464

    Article  Google Scholar 

  • Coleman TG, Hall JE (1992) A mathematical model of renal hemodynamics and excretory function. Structuring biological systems: a computer modelling approach. I. CRC Press, S. S. Boca Raton, pp 89–124

  • DiBona GF (2005) Dynamic analysis of patterns of renal sympathetic nerve activity: implications for renal function. Exp Physiol 90:159–161

    Article  Google Scholar 

  • DiBona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77(1):75–197

    Google Scholar 

  • Fisher ND, Jan Danser AH, Nussberger J, Dole WP, Hollenberg NK (2008) Renal and hormonal responses to direct renin inhibition with aliskiren in healthy humans. Circulation 117(25):3199–3205

    Article  Google Scholar 

  • Franco M, Martinez F, Quiroz Y, Galicia O, Bautista R, Johnson RJ, Rodriguez-Iturbe B (2007) Renal angiotensin II concentration and interstitial infiltration of immune cells are correlated with blood pressure levels in salt-sensitive hypertension. Am J Physiol 293:R251–R256

    Google Scholar 

  • Gomez RA, Lopez MLSS (2009) Who and where is the renal baroreceptor? The connexin hypothesis. Kidney Int 75:460–462

    Article  Google Scholar 

  • Gordon MS, Price DA, Hollenberg NK (2000) Blunted suppression of plasma renin activity in diabetes. J Renin Angiotensin Aldosterone Syst 1(3):252–256

    Article  Google Scholar 

  • Grunberger C, Obermayer B, Klar J, Kurtz A, Schweda F (2006) The calcium paradoxon of renin release: calcium suppresses renin exocytosis by inhibition of calcium-dependent adenylate cyclases AC5 and AC6. Circ Res 99:1197–1206

    Article  Google Scholar 

  • Guyton AC, Coleman TG, Granger HJ (1972) Circulation: overall regulation. Annu Rev Physiol 34:13–46

    Article  Google Scholar 

  • Hall JE (1991) Control of blood pressure by the renin-angiotensin-aldosterone system. Clin Cardiol 14(8 Suppl 4):IV6–IV21 (discussion IV51–IV55)

    Google Scholar 

  • He FJ, MacGregor GA (2003) Salt, blood pressure and the renin-angiotensin system. J Renin Angiotensin Aldosterone Syst 4(1):11–16

    Article  Google Scholar 

  • Hernandez AI, Le Rolle V, Defontaine A, Carrault G (2009) A multiformalism and multiresolution modelling environment: application to the cardiovascular system and its regulation. Philos Trans A Math Phys Eng Sci 367(1908):4923–4940

    Article  Google Scholar 

  • Inagami T, Mizuno K, Kawamura M, Okamura T, Clemens DL, Higashimori K (1992) Localization of components of the renin-angiotensin system within the kidney and sustained release of angiotensins from isolated and perfused kidney. Tohoku J Exp Med 166:17–26

    Article  Google Scholar 

  • Johns DW, Peach MJ, Gomez RA, Inagami T, Carey RM (1990) Angiotensin II regulates renin gene expression. Am J Physiol 259:F882–F887

    Google Scholar 

  • Karaaslan F, Denizhan Y, Kayserilioglu A, Gulcur HO (2005) Long-term mathematical model involving renal sympathetic nerve activity, arterial pressure, and sodium excretion. Ann Biomed Eng 33:1607–1630

    Article  Google Scholar 

  • Klar J, Sandner P, Muller MWH, Kurtz A (2002) Cyclic AMP stimulates renin gene transcription in juxtaglomerular cells. Pflugers Arch 444:335–344

    Article  Google Scholar 

  • Laragh JH (1995) Renin-angiotensin-aldosterone system for blood pressure and electrolyte homeostasis and its involvement in hypertension, in congestive heart failure and in associated cardiovascular damage (myocardial infarction and stroke). J Hum Hypertens 9(6):385–390

    Google Scholar 

  • Laragh J (2001) Laragh’s lessons in pathophysiology and clinical pearls for treating hypertension. Am J Hypertens 14:186–194

    Article  Google Scholar 

  • Lijnen PJ, Amery AK, Fagard RH (1978) Endogenous angiotensin I concentration in human plasma. J Lab Clin Med 92(3):353–362

    Google Scholar 

  • Lopez MLS, Pentz ES, Nomasa T, Smithies O, Gomez RA (2004) Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 6:719–728

    Article  Google Scholar 

  • Montani JP, Van Vliet BN (2009a) Commentary on ‘current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure’. Exp Physiol 94(4):396–397

    Article  Google Scholar 

  • Montani JP, Van Vliet BN (2009b) Understanding the contribution of Guyton’s large circulatory model to long-term control of arterial pressure. Exp Physiol 94(4):382–388

    Article  Google Scholar 

  • Montani JP, Adair TH, Summers RL, Coleman TG, Guyton AC (1989) A simulation support system for solving large physiological models on microcomputers. Int J Biomed Comput 24(1):41–54

    Article  Google Scholar 

  • Nguyen G, Muller DN (2009) The biology of the (pro)renin receptor. J Am Soc Nephrol

  • Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109(11):1417–1427

    Google Scholar 

  • Nochy D, Barres D, Camilleri JP, Bariety J, Corvol P, Menard J (1983) Abnormalities of renin-containing cells in human glomerular and vascular renal diseases. Kidney Int 23(2):375–379

    Article  Google Scholar 

  • Nussberger J, Wuerzner G, Jensen C, Brunner HR (2002) Angiotensin II suppression in humans by the orally active renin inhibitor Aliskiren (SPP100): comparison with enalapril. Hypertension 39(1):E1–E8

    Article  Google Scholar 

  • Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201

    Article  Google Scholar 

  • Oates HF, Fretten JA, Stokes GS (1974) Disappearance rate of circulating renin after bilateral nephrectomy in the rat. Clin Exp Pharmacol Physiol 1(6):547–549

    Article  Google Scholar 

  • Ortiz-Capisano MC, Ortiz PA, Harding P, Garvin JL, Beierwaltes WH (2007) Adenylyl cyclase isoform v mediates renin release from juxtaglomerular cells. Hypertension 49:618–624

    Article  Google Scholar 

  • Osborn JW, Averina VA, Fink GD (2009a) Commentary on ‘Understanding the contribution of Guyton’s large circulatory model to long-term control of arterial pressure’. Exp Physiol 94(4):388–389

    Article  Google Scholar 

  • Osborn JW, Averina VA, Fink GD (2009b) Current computational models do not reveal the importance of the nervous system in long-term control of arterial pressure. Exp Physiol 94(4):389–396

    Article  Google Scholar 

  • Paul M, Poyan Mehr A, Kreutz R (2006) Physiology of local renin-angiotensin systems. Physiol Rev 86(3):747–803

    Article  Google Scholar 

  • Pentz ES, Lopez MLSS, Cordaillat M, Gomez RA (2008) Identity of the renin cell is mediated by cAMP and chromatin remodeling: an in vitro model for studying cell recruitment and plasticity. Am J Physiol 294:H699–H707

    Google Scholar 

  • Peti-Peterdi J, Fintha A, Fuson AL, Tousson A, Chow RH (2004) Real-time imaging of renin release in vitro. Am J Physiol 287:F329–F335

    Article  Google Scholar 

  • Rosivall L (2009) Intrarenal renin-angiotensin system. Mol Cell Endocrinol 302(2):185–192

    Article  Google Scholar 

  • Rosivall L, Peti-Peterdi J (2006) Heterogeneity of the afferent arteriole–correlations between morphology and function. Nephrol Dial Transplant 21(10):2703–2707

    Article  Google Scholar 

  • Schweda F, Kurtz A (2004) Cellular mechanism of renin release. Acta Physiol Scand 181:383–390

    Article  Google Scholar 

  • Schweda F, Friis U, Wagner C, Skott O, Kurtz A (2007) Renin release. Physiology 22:310–319

    Article  Google Scholar 

  • Share L (1988) Role of vasopressin in cardiovascular regulation. Physiol Rev 68(4):1248–1288

    Google Scholar 

  • Skott O (1986) Episodic release of renin from single isolated superfused rat afferent arterioles. Pflugers Archiv Eur J Physiol 407:41–45

    Article  Google Scholar 

  • Taugner R, Hackenthal E, Nobiling R, Harlacher M, Reb G (1981) The distribution of renin in the different segments of the renal arterial tree: immunocytochemical investigation in the mouse kidney. Histochemistry 73(1):75–88

    Article  Google Scholar 

  • Thomas S, Abdulhay E, Baconnier P, Fontecave J, Francoise J-P, Guillaud F, Hannaert P, Hernandez A, Rolle VL, Maziere P, Tahi F, Zehraoui F (2007) SAPHIR - a multi-scale, multi-resolution modeling environment targeting blood pressure regulation and fluid homeostasis. Conf Proc IEEE Eng Med Biol Soc 2007:6649–6652

    Google Scholar 

  • Thomas SR, Baconnier P, Fontecave J, Françoise J-P, Guillaud F, Hannaert P, Hernandez A, Rolle VL, Maziçre P, Tahi F, White RJ (2008) SAPHIR: a physiome core model of body fluid homeostasis and blood pressure regulation. Philos Trans A Math Phys Eng Sci 366:3175–3197

    Article  Google Scholar 

  • Visser FW, Boonstra AH, Titia Lely A, Boomsma F, Navis G (2008) Renal response to angiotensin II is blunted in sodium-sensitive normotensive men. Am J Hypertens 21(3):323–328

    Article  Google Scholar 

  • Volpe M, Savoia C, De Paolis P, Ostrowska B, Tarasi D, Rubattu S (2002) The renin-angiotensin system as a risk factor and therapeutic target for cardiovascular and renal disease. J Am Soc Nephrol 13(Suppl 3):S173–S178

    Google Scholar 

  • Wagner C, Kurtz A (1998) Regulation of renal renin release. Curre Opin Nephrol Hypert 7:437–441

    Article  Google Scholar 

  • Wagner C, de Wit C, Kurtz L, Grunberger C, Kurtz A, Schweda F (2007) Connexin40 is essential for the pressure control of renin synthesis and secretion. Circ Res 100:556–563

    Article  Google Scholar 

  • Williams GH (2005) Aldosterone biosynthesis, regulation, and classical mechanism of action. Heart Fail Rev 10(1):7–13

    Article  Google Scholar 

  • Yao J, Oite T, Kitamura M (2009) Gap junctional intercellular communication in the juxtaglomerular apparatus. Am J Physiol 296:F939–F946

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the CNRS (PH), the INSERM (PH and FG), the Faculty of Medicine and Pharmacy (University of Poitiers; PH and FG), and the Research-Hospital Center (CHU) of Poitiers. As a component of the SAPHIR project (FG), this work was supported by the ANR (decision #ANR-06-BYOS-0007-03). We wish to thank Drs V. LeRolle & A. Hernandez (LTSI/INSERM U642), and Dr J. Fontecave-Jallon (PRETA Team, TIMC-IMAG) for help with the M2SL versions of GCM. We wish to thank Pr. J. DiBona and acknowledge his kind and helpful comments about RSNA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Hannaert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillaud, F., Hannaert, P. A Computational Model of the Circulating Renin-Angiotensin System and Blood Pressure Regulation. Acta Biotheor 58, 143–170 (2010). https://doi.org/10.1007/s10441-010-9098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-010-9098-5

Keywords

Navigation