Skip to main content
Log in

Goodness in the enumeration and singleton degrees

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We investigate and extend the notion of a good approximation with respect to the enumeration \({({\mathcal D}_{\rm e})}\) and singleton \({({\mathcal D}_{\rm s})}\) degrees. We refine two results by Griffith, on the inversion of the jump of sets with a good approximation, and we consider the relation between the double jump and index sets, in the context of enumeration reducibility. We study partial order embeddings \({\iota_s}\) and \({\hat{\iota}_s}\) of, respectively, \({{\mathcal D}_{\rm e}}\) and \({{\mathcal D}_{\rm T}}\) (the Turing degrees) into \({{\mathcal D}_{\rm s}}\) , and we show that the image of \({{\mathcal D}_{\rm T}}\) under \({\hat{\iota}_s}\) is precisely the class of retraceable singleton degrees. We define the notion of a good enumeration, or singleton, degree to be the property of containing the set of good stages of some good approximation, and we show that \({\iota_s}\) preserves the latter, as also other naturally arising properties such as that of totality or of being \({\Gamma^0_n}\) , for \({\Gamma \in \{\Sigma,\Pi,\Delta\}}\) and n > 0. We prove that the good enumeration and singleton degrees are immune and that the good \({\Sigma^0_2}\) singleton degrees are hyperimmune. Finally we show that, for singleton degrees a s < b s such that b s is good, any countable partial order can be embedded in the interval (a s, b s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Case J.: Enumeration reducibility and partial degrees. Ann. Math. Log. 2, 419–439 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cooper S.B., McEvoy K.: On minimal pairs of enumeration degrees. J. Symbolic Log. 50(4), 983–1001 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cooper S.B.: Partial degrees and the density problem. J. Symbolic Log. 47, 854–859 (1982)

    Article  MATH  Google Scholar 

  4. Cooper S.B.: Enumeration reducibility, nondeterministic computations and relative computability of partial functions. In: Ambos-Spies, K., Müller, G., Sacks, G.E. (eds) Recursion Theory Week, Oberwolfach 1989, volume 1432 of Lecture notes in Mathematics, pp. 57–110. Springer, Heidelberg (1990)

    Google Scholar 

  5. Cooper S.B.: Computability Theory. Chapman and Hall, Boca Raton (2004)

    MATH  Google Scholar 

  6. Griffith E.J.: Limit lemmas and jump inversion in the enumeration degrees. Arch. Math. Log. 42, 553–562 (2003)

    Article  Google Scholar 

  7. Harris, C.M.: On the jump classes of noncuppable enumeration degrees. To appear in the J. Symbolic Log

  8. Jockusch C.G. Jr: Semirecursive sets and positive reducibility. Trans. Amer. Math. Soc. 131, 420–436 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kent, T.F.: s-degrees within e-degrees. In: Theory and Applications of Models of Computation, volume 4978 of Lecture Notes in Computer Science, pp. 579–587 (2008)

  10. Kleene S.C., Post E.L.: The upper semi-lattice of degrees of unsolvability. Ann. Math. 59, 379–407 (1954)

    Article  MathSciNet  Google Scholar 

  11. Lachlan H., Shore R.A.: The n-rea enumeration degrees are dense. Arch. Math. Log. 31, 277–285 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. McEvoy, K.: The Structure of the Enumeration Degrees. PhD thesis, The University of Leeds, UK (1984)

  13. Odifreddi P. G.: Classical Recursion Theory. Elsevier Science B.V., Amsterdam (1989)

    MATH  Google Scholar 

  14. Omanadze R. Sh., Sorbi A.: Strong enumeration reducibilities. Arch. Math. Log. 45, 869–912 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sacks G.E.: Degrees of Unsolvability. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  16. Soare R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

    Google Scholar 

  17. Sorbi A.: The Enumeration Degrees of the \({\Sigma^0_2}\) sets, pp. 303–330. Marcel Dekker, New York (1997)

    Google Scholar 

  18. Shore, R., Sorbi, A.: Jumps of \({\Sigma^0_2}\) -high e-degrees and properly \({\Sigma^0_2}\) e-degrees. In: Arslanov, M.M., Lempp, S. (eds) Recursion Theory and Complexity, volume 2 of De Gruyter Series in Logic and its Applications, pp. 157–172. De Gruyter (1999)

  19. Zacharov S.D.: e- and s- degrees. Algebra Log. 23, 273–281 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Harris.

Additional information

Research supported by EPSRC research grant No. EP/G000212, Computing with Partial Information: Definability in the Local Structure of the Enumeration Degrees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, C.M. Goodness in the enumeration and singleton degrees. Arch. Math. Logic 49, 673–691 (2010). https://doi.org/10.1007/s00153-010-0192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-010-0192-9

Keywords

Mathematical Subject Classification (2000)

Navigation