Skip to main content
Log in

Individual Based Model for Grouper Populations

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

Dusky groupers (Epinephelus marginatus) are characterized by a complex sex allocation strategies and overexploitation of bigger individuals. We developed an individual based model to investigate the long-term effects of density dependence on grouper population dynamics and to analyze the variabilities of extinction probabilities as a result of interacting mortalities at different life stages. We conduct several simulations with different forms of sex allocation functions and different combinations of mortality rates. The model was parametrized using data on dusky grouper populations from the literature. The most important insights produced by this simulation study are that density dependence of sex allocation is an evolutionarily stable strategy, increases the population biomass, mitigates the effect of the removal of large male and indicates a need for protection of females and flexible stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andrade AB, Machado LF, Hostim-Silva M, Barreiros JP (2003) Reproductive biology of the dusky grouper Epinephelus Marginatus (LOWE, 1834). Braz Arch Biol Technol 46(3):373–381

    Article  Google Scholar 

  • Beverton RJH, Holt SJ (1959) A review of lifespans and mortality rates of fichs in nature and the relation to growth and other physiological characteristics. Lifesp Animals GEW 5:142–180

    Google Scholar 

  • Bouain A, Siau Y (1983) Observations on the female reproductive cycle and fecundity of three species of groupers (Epinephelus) from the southeast Tunisian seashores. Marine Biol 73:211–220

    Article  Google Scholar 

  • Brusle J (1985) Expose synoptique des données biologiques sur les mérous Epinephelus aeneus (geoffroy Saint Hilaire, 1809) et Epinephelus guaza (Linnaeus, 1758) de l’ocean Atlantique et de la Méditerranée, Synopsis sur les Pêches, FAO

  • Buston P (2003) Social hierarchies: size and growth modification in clownfish. Nature 424:145–146

    Article  Google Scholar 

  • Caswell H (2001) Matrix population models: construction, analysis, and interpretation. 2nd edn. Sunderland

  • Charnov EL (1982) The theory of sex allocation, volume 18 of Monogr Popul Biol. Princeton University Press, New Jersey

    Google Scholar 

  • Chauvet C (1981) Calcul par otolimetrie de la relation Long.T–Age d’Epinephelus guaza (L.1758) de la côte nord de la Tunisie. Rapp Comm Int Sea Médit 27:5

    Google Scholar 

  • Chauvet C (1991) Statut d’Epinephelus guaza (Linnaeus, 1758) et élément de dynamique des populations méditerranéenne et atlantique, Les Espèces Marines à Protéger en Méditerranée 1:255–275

  • Chauvet C (2007) Le frai d’Epinephelus marginatus (Lowe, 1834): seize années d’observations in situ (1976 1992), Second International Symposium on the Mediterranean Groupers. P. Francour (ed.) (in press)

  • Cushing JM, Li J (1992) Intra-specific competition and density dependent juvenile growth. Bull Math Biol 54:503–519

    Google Scholar 

  • DeAngelis DL, Gross LJ (1992) Individual-based models and approaches in ecology: populations, communities, and ecosystems. Chapman and Hall, New York

    Google Scholar 

  • Ghiselin M (1969) The evolution of hermaphroditism among animals. Q Rev Biol 44:189–208

    Article  Google Scholar 

  • Kuwamura T, Nakashima Y (1998) New aspects of sex change among reef fishes: recent studies in Japan. Environ Biol Fish 21:125–135

    Article  Google Scholar 

  • Liu M, Sadovy Y (2004) The influence of social factors on adult sex change and juvenile sexual differentiation in a diandric, protogynous epinepheline, Cephalopholis boenak (Pisces, Serranidae). J Zool Lond 264:239–248

    Article  Google Scholar 

  • Lutenesky MMF (1994) Density-dependent protogynous sex change in territorial-haremic fishes: models and evidence. Behav Ecol 5:375–383

    Article  Google Scholar 

  • Marino G, Panini E, Longobardi A., Mandich A, Finoia MG, Zohar Y, Mylonas CC (2003) Induction of ovulation in captive-read dusky grouper, Epinephelus marginatus (Lowe, 1834), with a sustained-release GnRHa implant. Aquaculture 219:841–858

    Article  Google Scholar 

  • Mark H (1999) A brief review of grouper reproductive biology and implications for management of the gulf of Mexico gag grouper fisheries, Review for Southeastern Fisheries Association Inc.

  • Maynard-Smith J (1985) Evolutionary genetics. Oxford University Press, USA

  • Munday PL (2002) Bi-directional sex change: testing the growth-rate advantage model. Behav Ecol Sociobiol 52:247–254

    Article  Google Scholar 

  • Munday PL, Caley MJ, Jones GP (1998) Bi-directional sex change in a coral-dwelling goby. Behav Ecol Sociobiol 43:371–377

    Article  Google Scholar 

  • Munday PL, Buston PM, Warner RR (2006) Diversity and flexibility of sex-change strategies in animals. Trends Ecol Evol 21:89–95

    Article  Google Scholar 

  • Munoz RC, Warner RR (2003) A new version of the size-advantage hypothesis for sex change: incorporating sperm competition and size–fecundity skew. Am Nat 161:749–761

    Article  Google Scholar 

  • Okumura S (2001) Evidence of sex reversal towards both directions in reared red spotted grouper Epinephelus akaara. Fish Sci 67:535–537

    Article  Google Scholar 

  • Polikansky D (1982) Sex change in plants and animals. Annu Rev Ecol Syst 13:471–495

    Article  Google Scholar 

  • Renones O, Grau A, Pineiro C, Mas X, Goni R, Riera F (2007) Growth and reproduction of the exploited population of Epinephelus marginatus (Lowe, 1834) in the Balearic Islands (Western Mediterranean), Second International Symposium on the Mediterranean Groupers. P. Francour (ed)

  • Robertson DR, Warner RR (1978) Sexual patterns in the labroid fishes of the western Caribbean II. Parrotfishes (Scaridae), Smithson Contributions Zool 255:1–26

    Google Scholar 

  • Shapiro DY, Potts GW, Wooton RJ (1984) Sex reversal and sociodemographic processes in coral reef fishes. In: Fish reproduction: strategies and tactics. Academic Press, pp 103–118

  • Warner RR (1975) The adaptive significance of sequential hermaphroditism in animals. Am Nat 109:61–82

    Article  Google Scholar 

  • Warner RR (1988) Sex change and the size-advantage model. Trends Ecol Evol 133–136

  • Warner RR (1996) Social control of sex change in the shelf limpet, Crepidula norrisiarum: size-specific responses to local group composition. J Exp Mar Biol Ecol 204:155–167

    Article  Google Scholar 

  • Warner RR, Robertson DR (1978) Sexual patterns in the labroid fishes of the western Caribbean. I. The wrasses (Labridae). Smithson Contributions Zool 254:1–27

    Google Scholar 

  • Warner RR, Swearer SE (1991) Social control of sex change in the bluehead wrasse, Thalassoma bifasciatum (Pisces: Labridae). Biol Bull 181:199–204

    Article  Google Scholar 

  • Warner RR, Robertson DR, Leigh EG (1975) Sex change and sexual selection, Science (Washington, DC) 190:633–638

    Article  Google Scholar 

  • Wright WG (1989) Intraspecific density mediates sex-change in the territorial patellacean limpet Lottia gigantea. Mar Biol 100:353–364

    Article  Google Scholar 

  • Von Bertalanffy L (1934) Untersuchugen uber die Gesetzlichkeit des Wachstums. Roux’ Archiv fur Entwicklungsmechanik 131:613–652

    Article  Google Scholar 

Download references

Acknowledgments

We thank Pr. Roger Phan-Tan-Luu for helping with experimental design of the numerical simulation and Claude Chauvet for fruitful discussion on grouper populations. This work was done with the help of the Morroco-Tunisian project TT/MR 3324. A.M. acknowledges a Ph.D. grant from the Agence Universitaire de la Francophonie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slimane Ben Miled.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Miled, S., Kebir, A. & Hbid, M.L. Individual Based Model for Grouper Populations. Acta Biotheor 58, 247–264 (2010). https://doi.org/10.1007/s10441-010-9105-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-010-9105-x

keywords

Navigation