Skip to main content
Log in

Fundamental Problems in the Unification of Physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We discuss the following problems, plaguing the present search for the “final theory”: (1) How to find a mathematical structure rich enough to be suitably approximated by the mathematical structures of general relativity and quantum mechanics? (2) How to reconcile nonlocal phenomena of quantum mechanics with time honored causality and reality postulates? (3) Does the collapse of the wave function contain some hints concerning the future quantum gravity theory? (4) It seems that the final theory cannot avoid the problem of dynamics, and consequently the problem of time. What kind of time, if this theory is supposed to be background free? (5) Will the dynamics of the “final theory” be probabilistic? Quantum probability exhibits some essential differences as compared with classical probability; are they but variations of some more general probabilistic measure theory? (6) Do we need a radically new interpretation of quantum mechanics, or rather an entirely new theory of which the present quantum mechanics is an approximation? (7) If the final theory is to be background free, it should provide a mechanism of space-time generation. Should we try to explain not only the generation of space-time, but also the generation of its material content? (8) As far as the existence of the initial singularity is concerned, one usually expects either “yes” or “not” answers from the final theory. However, if the mathematical structure of the future theory is supposed to be truly more general that the mathematical structures of the present general relativity and quantum mechanics, is a “third answer“ possible? Could this third answer be related to the probabilistic character of the final theory? We discuss these questions in the framework of a working model unifying gravity and quanta. The analysis reveals unexpected aspects of these rather wildly discussed issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barbour, J.B., Pfister, H. (eds.): Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser, Boston (1995)

    MATH  Google Scholar 

  2. Bosshard, B.: On the b-boundary of the closed Friedmann models. Commun. Math. Phys. 46, 263–268 (1976)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Choquet-Bruhat, Y., DeWitt-Morette, C., Dillard-Bleick, M.: Analysis, Manifolds and Physics. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  4. Clarke, C.J.R.: The Analysis of Space-Time Singularities. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  5. Connes, A.: Noncommutative Geometry. Academic Press, New York (1994)

    MATH  Google Scholar 

  6. Connes, A., Rovelli, C.: Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories. Class. Quantum Gravity 11, 2899–2917 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. Cuculescu, I., Oprea, A.G.: Noncommutative Probability. Kluwer, Dordrecht (1994)

    MATH  Google Scholar 

  8. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  9. Hawking, S.W.: The existence of cosmic time functions. Proc. R. Soc. Lond. A 308, 433–435 (1968)

    ADS  Google Scholar 

  10. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  11. Heller, M.: A commutative Friedman cosmological model. Ann. Phys. 19, 196–201 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heller, M., Sasin, W.: The structure of the b-completion of space-time. Gen. Relativ. Gravit. 26, 797–811 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Heller, M., Sasin, W.: Structured spaces and their application to relativistic physics. J. Math. Phys. 36, 3644–3662 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Heller, M., Sasin, W.: Noncommutative structure of singularities in general relativity. J. Math. Phys. 37, 5665–5671 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Heller, M., Sasin, M.: The closed Friedman world model with the initial and final singularities as non-commutative space. In: Chruściel, P.T. (ed.), Mathematics of Gravitation, part I: Lorentzian Geometry and Einstein Equations. Banach Center Publications, vol. 41, pp. 153–162. Polish Academy of Sci., Warszawa (1997)

    Google Scholar 

  16. Heller, M., Sasin, W.: Noncommutative unification of general relativity and quantum mechanics. Int. J. Theor. Phys. 38, 1619–1642 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Heller, M., Sasin, W., Lambert, D.: Groupoid approach to noncommutative quantization of gravity. J. Math. Phys. 38, 5840–5853 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Heller, M., Odrzygózdz, Z., Pysiak, L., Sasin, W.: Structure of malicious singularities. Int. J. Theor. Phys. 42, 427–441 (2003)

    Article  MATH  Google Scholar 

  19. Heller, M., Odrzygóźdź, Z., Pysiak, L., Sasin, W.: Noncommutative unification of general relativity and quantum mechanics. A finite model. Gen. Relativ. Gravit. 36, 111–126 (2004)

    Article  MATH  ADS  Google Scholar 

  20. Heller, M., Pysiak, L., Sasin, W.: Noncommutative dynamics of random operators. Int. J. Theor. Phys. 44, 619–628 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Heller, M., Pysiak, L., Sasin, W.: Noncommutative unification of general relativity and quantum mechanics. J. Math. Phys. 46, 122501 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  22. Heller, M., Pysiak, L., Sasin, W.: Conceptual unification of gravity and quanta. Int. J. Theor. Phys. 46, 2494–2512 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Heller, M., Odrzygóźdź, Z., Pysiak, L., Sasin, W.: Anatomy of malicious mingularities. J. Math. Phys. 48, 092504 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  24. Heller, M., Pysiak, L., Sasin, W., Golda, Z.: Noncommutative closed Friedman universe. Gen. Relativ. Gravit. 41, 1625–1637 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Johnson, R.A.: The bundle boundary in some special cases. J. Math. Phys. 18, 898–902 (1977)

    Article  MATH  ADS  Google Scholar 

  26. Landi, G.: An Introduction to Noncommutative Spaces. Springer, Berlin (1997)

    MATH  Google Scholar 

  27. Lesniewski, A.: Noncommutative geometry. Not. Am. Math. Soc. 44, 800–805 (1997)

    MATH  MathSciNet  Google Scholar 

  28. Martin, D.: Manifold Theory. An Introduction for Mathematical Physicists. Ellis Horwood, New York (1991)

    MATH  Google Scholar 

  29. Masson, T.: Géométrie non commutative et applications à la théorie des champs. Thesis, Vienna, Preprint ESI 296, 91–95 (1996)

  30. Paterson, A.L.T.: Groupoids, Inverse Semigroups, and Their Operator Algebras. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  31. Pysiak, L.: Time flow in a noncommutative regime. Int. J. Theor. Phys. 46, 17–31 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  32. Pysiak, L., Heller, M., Odrzygóźdź, Z., Sasin, W.: Observables in a noncommutative approach to the unification of quanta and gravity: A finite model. Gen. Relativ. Gravit. 37, 541–555 (2005)

    Article  MATH  ADS  Google Scholar 

  33. Rédei, M., Summers, S.J.: Quantum probability theory. Stud. Hist. Philos. Mod. Phys. 38, 390–417 (2007)

    Article  MATH  Google Scholar 

  34. Schmidt, B.G.: A new definition of singular points in general relativity. Gen. Relativ. Gravit. 1, 269–280 (1971)

    Article  MATH  ADS  Google Scholar 

  35. Sunder, V.S.: An Invitation to von Neumann Algebras. Springer, New York (1987)

    Book  MATH  Google Scholar 

  36. Voiculecsu, D.V.: Symmetries of some reduced free product C -algebras. In: Operator Algebras and Their Connections with Topology and Ergodic Theory. Lecture Notes in Mathematics, vol. 1132. Springer, Berlin (1985)

    Google Scholar 

  37. Voiculescu, D.V., Dykema, K., Nica, A.: Free Random Variables. CRM Monograph Series, No 1. American Mathematical Society, Providence (1992)

    MATH  Google Scholar 

  38. Wheeler, J.A.: Geometrodynamics. Academic Press, New York (1962)

    MATH  Google Scholar 

  39. Wheeler, J.A.: Geodynamics and the issue of the final state. In: DeWitt, C., DeWitt, B. (eds.) Relativity, Groups and Topology, pp. 315–520. Gordon and Breach, New York (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Heller.

Additional information

M. Heller correspondence address: ul. Powstańców Warszawy 13/94, 33-110 Tarnów, Poland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heller, M., Pysiak, L. & Sasin, W. Fundamental Problems in the Unification of Physics. Found Phys 41, 905–918 (2011). https://doi.org/10.1007/s10701-011-9535-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-011-9535-6

Keywords

Navigation