Skip to main content
Log in

The Hausdorff-Ershov Hierarchy in Euclidean Spaces

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The topological arithmetical hierarchy is the effective version of the Borel hierarchy. Its class Δta 2 is just large enough to include several types of pointsets in Euclidean spaces ℝk which are fundamental in computable analysis. As a crossbreed of Hausdorff's difference hierarchy in the Borel class ΔB 2 and Ershov's hierarchy in the class Δ0 2 of the arithmetical hierarchy, the Hausdorff-Ershov hierarchy introduced in this paper gives a powerful classification within Δta 2. This is based on suitable characterizations of the sets from Δta 2 which are obtained in a close analogy to those of the ΔB 2 sets as well as those of the Δ0 2 sets. A helpful tool in dealing with resolvable sets is contributed by the technique of depth analysis. On this basis, the hierarchy properties, in particular the strict inclusions between classes of different levels, can be shown by direct constructions of witness sets. The Hausdorff-Ershov hierarchy runs properly over all constructive ordinals, in contrast to Ershov's hierarchy whose denotation-independent version collapses at level ω 2. Also, some new characterizations of concepts of decidability for pointsets in Euclidean spaces are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash, C.J., Knight, J.F.: Recursive structures and Ershov's hierarchy. Mathematical Logic Quarterly 42, 461–468 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Epstein, R.L., Haas, R., Kramer, R.L.: Hierarchies of sets and degrees below 0'. In: Logic Year 1979/80, Univ. of Connecticut. M. Lerman, J.H. Schmerl, R.I. Soare, (eds.), LN in Math 859, Springer Verlag, pp. 32–48

  3. Ershov, Yu.L.: A hierarchy of sets. I; II; III. Algebra i Logica, v. 7 (1968), no.1, 47-74; no.4, 15-47; v. 9 (1970), no.1, 34–51 (English translation by Plenum P.C.)

  4. Hausdorff, F.: Grundzüge der Mengenlehre. W. de Gruyter & Co., Berlin and Leipzig 1914; Reprint: Chelsea P.C., New York 1949

  5. Hausdorff, F.: Mengenlehre. W. de Gruyter & Co., Berlin and Leipzig, 1927

  6. Hausdorff, F.: Gesammelte Werke, Band II: ``Grundzüge der Mengenlehre''. E. Brieskorn, S.D. Chatterji, M. Epple, U. Felgner, H. Herrlich, M. Hušek, V. Kanovej, P. Koepke, G. Preuß, W. Purkert und E. Scholz, (eds.), Springer Verlag, Berlin, Heidelberg, New York, 2002

  7. Hemmerling, A.: On approximate and algebraic computability over the real numbers. Theoretical Computer Science 219, 185–223 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hemmerling, A.: Effective metric spaces and representations of the reals. Theoretical Computer Science 284, 347–372 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hemmerling, A.: Approximate decidability in Euclidean spaces. Mathematical Logic Quarterly 49, 34–56 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hemmerling, A.: Characterizations of the class Δta 2 over Euclidean spaces. Mathematical Logic Quarterly 50, 507–519 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hemmerling, A.: Hierarchies of function classes defined by the first-value operator. E.-M.-Arndt-Universität Greifswald, Preprint-Reihe Mathematik, Nr. 12/2004. (PS file available from: http://www.math-inf.uni-greifswald.de/preprints/titel04); Extended abstract in: Proc. of CCA'2004. Electronic Notes in Theoretical Computer Science 120, 59–72 (2005)

  12. Hertling, P.: Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Dissertation. Informatik Berichte 208-11/1996, Fern-Uni Hagen, 1996

  13. Hertling, P., Weihrauch, K.: Levels of degeneracy and exact lower complexity bounds for geometric algorithms. Proc. of the 6th Canadian Conf. on Computational Geometry, Saskatoon, 1994. pp. 237–242

  14. Kanovej, V., Koepke, P.: Deskriptive Mengenlehre in Hausdorffs Grundzügen der Mengenlehre. In: [6], pp. 773–787

  15. Kechris, A.S.: Classical descriptive set theory. Springer Verlag, New York, 1995

  16. Ko, K.-I.: Complexity theory of real functions. Birkhäuser, Boston et al., 1991

  17. Ko, K.-I., Friedman, H.: Computational complexity of real functions. Theoretical Computer Science 20, 323–352 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kreitz, C., Weihrauch, K.: Complexity theory on real numbers and functions. LN in Computer Science 145, 165–174 (1982)

    MATH  Google Scholar 

  19. Kuratowski, K.: Topology I. Academic Press, New York and London; PWN Warszawa, 1966

  20. Moschovakis, Y.N.: Descriptive set theory. North-Holland P. C., Amsterdam et al., 1980

  21. Odifreddi, P.: Classical recursion theory. North–Holland P.C., Amsterdam et al., 1989

  22. Penrose, R.: The emperor's new mind. Oxford University Press, New York, 1989

  23. Rogers, H. Jr.: Theory of recursive functions and effective computability. McGraw-Hill, New York, 1967

  24. Selivanov, V.L.: Wadge degrees of ω-languages of deterministic Turing machines. Theoretical Informatics and Applications 37, 67–83 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Selivanov, V.L.: Difference hierarchy in ϕ-spaces. Preprint 2003, to appear in: Algebra and Logic

  26. Wadge, W.W.: Reducibility and determinateness in the Baire space. Ph.D. Thesis. Univ. of California, Berkeley 1984

  27. Weihrauch, K.: Computability on computable metric spaces. Theoretical Computer Science 113, 191–210 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Weihrauch, K.: Computable analysis. Springer–Verlag, Berlin et al., 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Hemmerling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmerling, A. The Hausdorff-Ershov Hierarchy in Euclidean Spaces. Arch. Math. Logic 45, 323–350 (2006). https://doi.org/10.1007/s00153-005-0317-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-005-0317-8

Key words or phrases

Mathematics Subject Classification (2000)

Navigation