Skip to main content
Log in

Causes and Consequences of Eukaryotization Through Mutualistic Endosymbiosis and Compartmentalization

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

This paper reviews and extends ideas of eukaryotization by endosymbiosis. These ideas are put within an historical context of processes that may have led up to eukaryotization and those that seem to have resulted from this process. Our starting point for considering the emergence and development of life as an organized system of chemical reactions should in the first place be in accordance with thermodynamic principles and hence should, as far as possible, be derived from these principles. One trend to be observed is the ever-increasing complexity resulting in several layers of compartmentalization of the reaction system, either spatial (of which the eukaryotic cell is an example), or functional (as in the gradually deepening distinction between metabolic, enzymatic and information-storing functions within the cell). One of the causes of this complexification of living systems will have been the changes in environmental conditions, particularly the geochemical impoverishment of the biosphere during geological history, partly brought about by living systems themselves, and partly by the trend towards increasing efficiency and specificity of the reactions that occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Altman, S. (1984). Aspects of biochemical catalysis. Cell 36: 237–239.

    Article  Google Scholar 

  • Anbar, A.D. and A.H. Knoll (2002). Proterozoic ocean chemistry and evolution: a bioinorganic bridge? Science 297: 1137–1142.

    Article  Google Scholar 

  • Arnon, D.I. (1988). The discovery of ferredoxin: the photosynthetic path. Trends in Biochemical Sciences 13: 30–33.

    Article  Google Scholar 

  • Bada, J.L. and A. Lazcano (2002). Some like it hot, but not the first biomolecules. Science 296: 1982–1983.

    Article  Google Scholar 

  • Baltscheffsky, H. and M. Baltscheffsky (1994). Molecular origin and evolution of early biological energy conversion. In: Bengtson, S. (Ed.). Early Life on Earth. p. 81–90. Columbia University Press, New York.

    Google Scholar 

  • Barbieri, M. (2003). The Organic Codes. An Introduction to Semantic Biology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Baymann, F., E. Lebrun, M. Brugna, B. Schoepp-Cothenet, M.-T Giudici-Orticoni and W. Nitschke (2003). The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Philosophical Transactions of the Royal Society of London B 358: 267–274.

    Article  Google Scholar 

  • Beerling, D.J., C.P. Osborne and W.G. Chaloner (2001). Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic Era. Nature 410: 352–354.

    Article  Google Scholar 

  • Benner, S.A., A.D. Ellington and A. Tauer (1989). Modern metabolism as a palimpsest of the RNA world. Proceedings of the National Academy of Sciences USA 86: 7054–7058.

    Google Scholar 

  • Bernstein, C. and H. Bernstein (1997). Ageing, sex and DNA repair. Academic Press, New York.

    Google Scholar 

  • Bjerrum, C.J. and D.E. Canfield (2002). Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417: 159–162.

    Article  Google Scholar 

  • Black, S. (2000). A Theory of the Origin of Life Plus a Brief History of Biochemistry. Vantage Press, New York.

    Google Scholar 

  • Brack, A. (Ed.) (1998). The Molecular Origins of Life. Cambridge University Press, Cambridge.

    Google Scholar 

  • Brasier M. D., and J.F. Lindsay (1998). A billion years of environmental stability and the emergence of eukaryotes: New data from northern Australia. Geology 26: 555–559.

    Article  Google Scholar 

  • Brewin, N. (1972). Catalytic role for RNA in DNA replication. Nature 236: 101.

    Google Scholar 

  • Briant, C. (Ed.) (1991). Metazoan Life without Oxygen. Chapman and Hall, London.

    Google Scholar 

  • Brocks, J.J., G.A. Logan, R. Buick and R.E. Summons (1999). Archean molecular fossils and the early rise of eukaryotes. Science 285: 1033–1036.

    Article  Google Scholar 

  • Broda, E. (1975). The Evolution of Bioenergetic processes. Pergamon Press, Oxford.

    Google Scholar 

  • Buss, L.W. (1987). The evolution of individuality. Princeton University Press, Princeton.

    Google Scholar 

  • Cairns-Smith, A.G. (1982). Genetic Takeover and the Mineral Origins of Life.Cambridge University Press, Cambridge.

    Google Scholar 

  • Cammack, R. (1983). Evolution and diversity in the iron-sulphur proteins. Chemica Scripta 21: 87–95.

    Google Scholar 

  • Canfield, D.E. (1998). A new model for Proterozoic ocean chemistry. Nature 396: 450–453.

    Article  Google Scholar 

  • Canfield, D.E. and A. Teske (1996). Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 382: 127–132.

    Article  Google Scholar 

  • Carroll, S.B., J.K. Grenier and S.D. Weatherbee (2001). From DNA to diversity. Molecular genetics and the evolution of animal design. Cambridge University Press, Cambridge.

    Google Scholar 

  • Cavalier-Smith, T. (1987). The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Annals of the New York Academy of Science 503: 55–71.

    Google Scholar 

  • Cavalier-Smith, T. (2002). The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. International Journal of Systematic and Evolutionary Microbiology 52: 7–76.

    Google Scholar 

  • Cech, T.R. (2000). The ribosome is a ribozyme. Science 289: 878–879.

    Article  Google Scholar 

  • Clothia, C. (1992). One thousand families for the molecular biologist. Nature 357: 543–544.

    Article  Google Scholar 

  • Daniel, R.M. and M.J Danson (1995). Did primitive microorganisms use nonhem iron proteins in place of NAD/P? Journal of Molecular Evolution 40: 559–563.

    Google Scholar 

  • De Duve, C. (1984). A Guided Tour through the Living Cell. Freeman, New York.

    Google Scholar 

  • De Duve, C. (2002). Life Evolving. Molecules, and Mind, and Meaning. Oxford University Press, Oxford.

    Google Scholar 

  • Delwiche, C.F. and J.D. Palmer (1997). The origin of plastids and their spread via secondary symbiosis. Plant Systematics and Evolution (Supplement) 11: 53–86.

    Google Scholar 

  • Dismukes, G.C., V.V. Klimov, S.V. Baranov, Yu. N. Kjslov, J. DasGupta and A. Tyryshkin (2001). The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proceedings of the National Academy of Sciences USA 98: 2170–2175.

    Article  Google Scholar 

  • Dorit, R.L., L. Schoenbach and W. Gilbert (1990). How big is the universe of exons? Science 250: 1377–1382.

    Google Scholar 

  • Dyer, B.D. and R.A. Obar (1994). Tracing the History of Eukaryotic Cells. Columbia University Press, New York.

    Google Scholar 

  • Eck, R. and M.O. Dayhoff (1966). Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152: 363–366.

    Google Scholar 

  • Elsasser, W.M. (1987). Reflections on a theory of organisms. Holism in biology. Johns Hopkins University Press, Baltimore.

    Google Scholar 

  • Embley, T.M., D.A. Horner and R.P. Hirt (1997). Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends in Ecology and Evolution 12: 437–441.

    Article  Google Scholar 

  • Farquhar, J., H. Bas and M. Thiemens (2000). Atmospheric influence of Earth's earliest sulphur cycle. Science 289: 756–758.

    Article  Google Scholar 

  • Fedonkin, M.A. (1996). The oldest fossil animals in ecological perspective. In: Ghiselin, M.T. </del>Life's Origin. p. 113–139. University of California Press, Berkeley.

    Google Scholar 

  • Fothergill-Gilmore, L.A. (1986). The evolution of the glycolytic pathway. Trends in Biochemical Sciences 11: 47–51.

    Article  Google Scholar 

  • Frausto da Silva, J.J.R. and R.J.P. Williams (1991). The Biological Chemistry of the Elements. The Inorganic Chemistry of Life. Clarendon Press, Oxford.

    Google Scholar 

  • Gray, M.W. (1998). Rickettsia, typhus and the mitochondrial connection. Nature 396: 109–110.

    Article  Google Scholar 

  • Gray, M.W. (2000). Mitochondrial genes on the move. Nature 408: 302–305.

    Article  Google Scholar 

  • Guerrero, R. (1991). Predation as a prerequisite to organelle evolution: Daptobacter as example. In: Margulis, L. (Ed.). Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. pp. 106–117. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Guerrero, R., C. Pedros-Alio, I. Esteve, J. Mas, D. Chase and L. Margulis (1986). Predatory prokaryotes and primary consumption evolved in bacteria. Proceedings of the National Academy of Sciences USA 83: 2138–2142.

    Google Scholar 

  • Gupta, R.S. (1998). Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among Archaebacteria, Eubacteria, and Eukaryotes. Microbial and Molecular Biology Reviews 62: 1435–1491.

    Google Scholar 

  • Gupta, R.S. and G.B. Golding (1996). The origin of the eukaryotic cell. Trends in Biochemical Science 21: 166–171.

    Article  Google Scholar 

  • Holland, H.D. (1994). Early Proterozoic atmospheric change. In: Bengtson, S. (Ed.) Early Life on Earth. p. 237–244. Nobel Symposium, 84. Columbia University Press, New York

    Google Scholar 

  • Hopkin, S.P. (1989). Ecophysiology of metals in terrestrial invertebrates. Elsevier, London.

    Google Scholar 

  • Howell, S.T., 1998. Molecular genetics of plant development. Cambridge University Press, Cambridge.

    Google Scholar 

  • Joyce, G.F. (2002). The antiquity of RNA-based evolution. Nature 418: 214–221.

    Article  Google Scholar 

  • Kahne, D. and W.S. Still (1988). Hydrolysis of a peptide bond in neutral water. Journal of the American Chemical Society 110: 7529–7533.

    Google Scholar 

  • Kashefi, K. and D.R. Lovley (2003). Extending the upper temperature limit of life. Science 301: 934.

    Article  Google Scholar 

  • Kauffman, S.A. (1993). The Origins of Order. Self-organization and Selection in Evolution. Oxford University Press, New York.

    Google Scholar 

  • Kauffman, S.A. (2000). Investigations. Oxford University Press, New York.

    Google Scholar 

  • Knoll, A.H. (1992). The early evolution of eukaryotes: a geological prospective. Science 256: 622–627.

    Google Scholar 

  • Knoll, A.H. (1996). Breathing room for early animals. Nature 382: 111–112.

    Article  Google Scholar 

  • Koch, A.L. (1985). Primeval cells: possible energy-generating and cell-division mechanisms. Journal of Molecular Evolution 21: 270–277.

    Google Scholar 

  • Kooijman, S.A.L.M. (2000). Dynamic energy and mass budgets in biological systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Kooijman, S.A.L.M. and R. Hengeveld (in press). The symbiotic nature of metabolic evolution. In: Reydon, T.A.C. and L. Hemerik (Eds). Current Themes in Theoretical Biology: A Dutch Perspective. Kluwer Academic Publishers, Dordrecht.

  • Kooijman, S.A.L.M., P. Auger, J.C. Poggiale and B.W. Kooij (2003). Quantitative steps in symbiogenesis and the evolution of homeostasis. Biological Reviews 78: 435–463.

    Article  Google Scholar 

  • Lahav, N. (1999). Biogenesis. Theories of Life's Origin. Oxford University Press, Oxford.

    Google Scholar 

  • Lambert, I.A., N.J. Beukes, C. Klein and J. Veizer (1992). Proterozoic mineral deposits through time. In: Schopf, J.W. and C. Klein (Eds). The Proterozoic Biosphere. A Multidisciplinary Study. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lang, B.F., M.W. Gray and G. Burger (1999). Mitochondrial genome evolution and the origin of the eukaryotic cell. Annual Review of Genetics 33: 351–397.

    Article  Google Scholar 

  • Lehninger, A.L. (1975). Biochemistry. 2nd Edition. Worth, New York.

    Google Scholar 

  • Lowe, D.R. (1994). Early environments: constraints and opportunities for early evolution. In: Bengtson, S. (Ed.). Early Life on Earth. p. 25–35. Nobel Symposium, 84. Columbia University Press, New York.

    Google Scholar 

  • Magnum C. (1991). Precambrian oxygen levels, the sulfide biosystem, and the origin of the Metazoa. Journal of Experimental Zoology 260: 33–42.

    Google Scholar 

  • Maniatis, T. and R. Reed (1987). The role of small nuclear ribonucleoprotein particles in premRNA splicing. Nature 325: 673–678.

    Article  Google Scholar 

  • Margulis, L. (1970). Origin of Eukaryotic Cells. Yale University Press, New Haven.

    Google Scholar 

  • Margulis, L. (1981). Symbiosis in Cell Evolution. Freeman, New York.

    Google Scholar 

  • Martin, W. (2002). A powerhouse divided. Science 287: 1219–1221.

    Article  Google Scholar 

  • Martin, W. and R.G. Herrmann (1998). Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiology 118: 9–17.

    Article  Google Scholar 

  • Martin, W. and M. Müller (1998). The hydrogen hypothesis for the first eukaryotes. Nature 392: 37–48.

    Article  Google Scholar 

  • Martin, W. and M.J. Russell (2003). On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemiautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philosophical Transactions of the Royal Society of London B 358: 59–85.

    Article  Google Scholar 

  • McMenamin, M.A.S. and D.L.S. McMenamin (1990). The Emergence of Animals. The Cambrian Breakthrough. Columbia University Press, New York.

    Google Scholar 

  • Meyer, A. (2003). Duplication, duplication. Nature 421: 31–32.

    Article  Google Scholar 

  • Miller, S.L. (1953). The production of amino acids under possible primitive earth conditions. Science 117: 528–529.

    Google Scholar 

  • Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191: 144–148.

    Google Scholar 

  • Mitchell, P. (1979). Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206: 1148–1159.

    Google Scholar 

  • Morowitz, H.J. (1978). Proton semiconductors and energy transduction in biological systems. American Journal of Physiology 235: R99–R114.

    Google Scholar 

  • Morowitz, H.J. (1981). Phase separation, charge separation and biogenesis. BioSystems 14: 41–47.

    Article  Google Scholar 

  • Morowitz, H.J. (1992). Beginnings of Cellular Life. Metabolism recapitulates biogenesis. Yale University Press, New Haven.

    Google Scholar 

  • Müller, M. and W. Martin (1999). The genome of Rickettsia prowazekii and some thoughts on the origin of mitochondria and hydrogenosomes. BioEssays 27: 377–381.

    Article  Google Scholar 

  • Navarro-Gonzalez, R., C.P. McKay and D.N. Mvondo (2001). A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412: 61–64.

    Article  Google Scholar 

  • Ogata, H., S. Audic, P. Renesto-Audiffren, P.-E. Fournier, V. Barbe, D. Samson, V. Roux, P. Cossart, J. Weissenbach, J.-M. Claverie and D. Raoult (2001). Mechanisms of evolution in Rickettsia coroni and R. prowazekii. Science 293: 2093–2098.

    Google Scholar 

  • Overmann, J. and K. Schubert (2002). Phototrophic consortia: model systems for symbiontic interrelations between prokaryotes. Archives of Microbiology 177: 201–208.

    Article  Google Scholar 

  • Paterson, H.E.H. (1985). The recognition concept of species. In: Vrba, E. (Ed.). Species and speciation. p. 21–29. Transvaal Museum, Pretoria.

    Google Scholar 

  • Piaget, J. (1968). Le Structuralisme. Presses Universitaires de France, Paris.

    Google Scholar 

  • Ponnamperuma, C. (1972). The Origins of Life. Thames and Hudson, London.

    Google Scholar 

  • Prigogine, I. and I. Stengers (1984). Order out of Chaos. Man's New Dialogue with Nature. Heinemann, London.

    Google Scholar 

  • Pullman, B. (1972). Electronic factors in biochemical evolution. In: Ponnamperuma, C. (Ed.). Exobiology. p. 136–169. North Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Pullman, B. and A. Pullman (1961). Submolecular structure of the nucleic acids. Nature 189: 725–727.

    Google Scholar 

  • Pullman, B. and A. Pullman (1962). Electronic delocalisation and biochemical evolution. Nature 196: 1137–1142.

    Google Scholar 

  • Pullman, B., P. Claverie and J. Caillet (1966). On the exclusivity of hydrogen-bonded pairing between Watson-Crick complementary bases. Journal of Molecular Biology 22: 373–375.

    Google Scholar 

  • Reanney, D. (1979). RNA splicing and polynucleotide evolution. Nature 277: 598–600.

    Google Scholar 

  • Rizzotti, M. (1996). Defining Life: the Central Problem in Theoretical Biology. University of Padua, Padua.

    Google Scholar 

  • Rizzotti, M. (2000). Early Evolution. From the Appearance of the First Cell to the First Modern Organisms. Birkhauser, Basel.

    Google Scholar 

  • Ronneberg, T.A, L. F. Landweber and S.J. Freeland (2000). Testing a biosynthetic theory on the genetic code: fact or artifact? Proceedings of the National Academy of Sciences USA 97: 13690–13695.

    Article  Google Scholar 

  • Russell, M.J. and A.J. Hall (1997). The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society of London 154: 377–402.

    Google Scholar 

  • Russell, M.J. and A.J. Hall (2003). From geochemistry to biochemistry. Chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. Geochemical News 153: 6–12.

    Google Scholar 

  • Russell, M.J., A.J. Hall, and A.R. Mellersh (2003). On the dissipation of thermal and chemical energies on the early Earth: the onset of hydrothermal convection, chemiosmosis, genetically regulated metabolism and oxygenic photosynthesis. In: Ikan, R. (Ed.) Natural and Laboratory-Simulated Thermal Geochemical Processes. p.325–388. Kluwer, Dordrecht.

    Google Scholar 

  • Schopf, J.W. and C. Klein (1992). The Proterozoic Biosphere. A Multidisciplinary Study. Cambridge University Press, Cambridge.

    Google Scholar 

  • Schrödinger, E. (1944). What is Life? The Physical Aspect of the Living Cell. Cambridge University Press, Cambridge.

    Google Scholar 

  • Shapiro, R. (1986). Origins. A Skeptic's Guide to the Creation of Life on Earth. Heinemann, New York.

    Google Scholar 

  • Shapiro, R. (1988). Prebiotic ribose syntheses: a critical analysis. Origins of Life and Evolution of the Biosphere 18: 71–85.

    Google Scholar 

  • Shapiro, R. (1995). The prebiotic role of adenine: a critical analysis. Origins of Life and Evolution of the Biosphere 25: 83–98.

    Google Scholar 

  • Tielens, A.G.M., C. Rotte, J.J. van Helmond and W. Martin (2002). Mitochondria as we don't know them. Trends in Biochemical Sciences 27: 564–572.

    Article  Google Scholar 

  • Trifonov, E.N. (2000). Leap into life's beginnings. Tracking the chronology of amino acids. Science Spectra 20: 62–71.

    Google Scholar 

  • Trifonov, E.N. and T. Bettecken (1997). Sequence fossils, triplet expansion, and reconstruction of earliest codons. Gene 205: 1–6.

    Article  Google Scholar 

  • Van den Ent F., L.A. Amos and J. Lowe (2001). Prokaryotic origin of the actin cytoskeleton. Nature 413: 39–44.

    Article  Google Scholar 

  • Van der Giezen, M., D.J. Slotboom, D.S. Horner, P.J. Dyal, M. Harding, G.P. Xue, T.M. Embley and E.R.S. Kunji (2002). Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin of both organelles. EMBO Journal 21: 572–579.

    Article  Google Scholar 

  • Van Dover, C.L. (2000). The Ecology of Deep-Sea Hydrothermal Vents. Princeton University Press, Princeton.

    Google Scholar 

  • Van Holde, K.E. (1980). The origin of life: a thermodynamic critique. In: Halverson, H.O. and K.E. Van Holde (Eds). The Origins of Life and Evolution. p. 31–46. Liss, New York.

    Google Scholar 

  • Vellai, T., K. Takacs and G. Vida (1998). A new aspect to the origin and evolution of eukaryotes. Journal of Molecular Evolution 46: 499–507.

    Google Scholar 

  • Wächtershäuser, G. (1998a). Before enzymes and templates: theory of surface metabolism. Microbiological Reviews 52: 452–484.

    Google Scholar 

  • Wächtershäuser, G. (1998b). Towards a reconstruction of ancestral genomes by gene cluster alignment. Systematic and Applied Microbiology 27: 473–477.

    Google Scholar 

  • Wald, G. (1962). Life in the second and third periods; or why phosphorus and sulphur for highenergy bonds? In: Kasha, M. and B. Pullman (Eds). Horizons in Biochemistry. p. 127–142. Academic Press, New York.

    Google Scholar 

  • Westheimer, F.H. (1987). Why nature choose phosphates. Science 235: 373–1178.

    Google Scholar 

  • White, H.B. (1976). Coenzymes as fossils of an earlier metabolic phase. Journal of Molecular Evolution 7: 101–104.

    Google Scholar 

  • White, H.B. (1982). Evolution of coenzymes and the origin of pyridine nucleotides. In: Everse, J., B. Anderson and K-S. You (Eds). The Pyridine Nucleotide Coenzymes. p. 2–17. Academic Press, New York.

  • Wilde, S.A., J.W. Valley, W.H. Peck and C.M. Graham (2001). Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409: 175–178.

    Article  Google Scholar 

  • Williams, R.J.P. (1981). Natural selection of chemical elements. Proceedings of the Royal Society of London B 213: 361–397.

    Google Scholar 

  • Williams, R.J.P. and J.J.R. Frausto da Silva (1996). The Natural Selection of the Chemical Elements. The Environment and Life's Chemistry. Clarendon Press, Oxford.

    Google Scholar 

  • Williams, R.J.P. and J.J.R. Frausto da Silva (1999). Bringing Chemistry to Life. From Matter to Man. Oxford University Press, Oxford.

    Google Scholar 

  • Zubay, S. (2000). Origins of Life on the Earth and in the Cosmos. 2nd Edition. Academic Press, San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hengeveld, R., Fedonkin, M. Causes and Consequences of Eukaryotization Through Mutualistic Endosymbiosis and Compartmentalization. Acta Biotheor 52, 105–154 (2004). https://doi.org/10.1023/B:ACBI.0000043439.34470.29

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ACBI.0000043439.34470.29

Keywords

Navigation