Skip to main content
Log in

Spin Axioms in Different Geometries of Relativistic Continuum Physics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The 24 components of the relativistic spin tensor consist of 3 + 3 basic spin fields and 9 + 9 constitutive fields. Empirically only three basic spin fields and nine constitutive fields are known. This empirem can be expressed by two spin axioms, one of them denying purely relativistic spin fields, and the other one relating the three additional basic fields and the nine additional constitutive fields to the known (and measurable) ones. This identification by the spin axioms is material-independent and does not mix basic spin fields with constitutive properties. The approaches to the Weyssenhoff fluid and the Dirac-electron fluid found in literature are discussed with regard to these spin axioms. The conjecture is formulated, that another reduction from six to three basic spin fields which does not obey the spin axioms introduces special material properties by not allowed mixing of constitutive and basic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. C. Eckart, Phys. Rev. 58, 919(1940).

    Google Scholar 

  2. A. H. Taub. In Proceedings of the first Symposium of Applied Mathematics (Am. Math. Soc., Providence, R.I., 1949), pp. 148-157.

  3. G. G. A. BÅuerle and Chr. J. Haneveld, Physica 121A, 541-551(1983).

    Google Scholar 

  4. G. A. Maugin. J. Math. Phys 19(5), 1220-1226 (1978).

    Google Scholar 

  5. G. A. Mauginand A. C. Eringen, J. Mecanique (paris) 16, 101(1977).

    Google Scholar 

  6. H.-H.v. Borzeszkowski and Th. Chrobok, Found. Phys. 33, 529(2003).

    Google Scholar 

  7. A. Papapetrou Proc. Roy. Soc. (London) A 209, 248-258(1951).

    Google Scholar 

  8. E. Corinaldesiand A. Papapetrou, Proc. Roy. Soc. (London) 209, 258-268 (1951).

    Google Scholar 

  9. Yu. N. Obukhovand V. A. Korotky, Class. Quantum Grav. 4, 1633-1657 (1987).

    Google Scholar 

  10. Yu. N. Obukhovand O. B. Piskareva, Class. Quantum Grav. 6, L15-L19 (1989).

    Google Scholar 

  11. J. Weyssenhoffand A. Raabe, Acta Phys. Polon. 9, 7-53 (1947).

    Google Scholar 

  12. W. Muschik, C. Papenfußand H. Ehrentraut, J. Non-Newtonian Fluid Mech. 96, 255-290 (2001).

    Google Scholar 

  13. S. R. de Grootand L. G. Suttorp, Physica 37, 284(1967).

    Google Scholar 

  14. S. R. de Grootand L. G. Suttorp, Physica 37, 297(1967).

    Google Scholar 

  15. S. R. de Grootand L. G. Suttorp, Physica 39, 28(1968).

    Google Scholar 

  16. S. R. de Grootand L. G. Suttorp, Physica 39, 41(1968).

    Google Scholar 

  17. S. R. de Grootand L. G. Suttorp, Physica 39, 61(1968).

    Google Scholar 

  18. S. R. de Grootand L. G. Suttorp, Physica 39, 84(1968).

    Google Scholar 

  19. D. W. Sciama, "On the analogy between charge and spin in general relativity" Recent Development in General Relativity, (Pergamon, 1962).

  20. T. W. B. Kibble, J. Math. Phys. 2, 212(1961).

    Google Scholar 

  21. F. W. Hehl, P. van der Heide, and D. G. Kerlick., Rev. Mod. Phys. 48, 393(1976).

    Google Scholar 

  22. J. A. Schouten, Ricci Calculus., (Springer Verlag, 1954).

  23. Ph. B. Yasskinand W. R. Stoeger, Phys. Rev. D 21, 2081(1980).

    Google Scholar 

  24. W. Muschik, C. Papenfußand H. Ehrentraut, Concepts of Continuum Thermodynamics, Technische UniversitÅt Berlin und Kielce University of Technology, 1996, 1996.

  25. W. Muschik, Aspects of Non-Equilibrium Thermodynamics, (World Scientific, Singapore 1990).

    Google Scholar 

  26. H. Herrmann, Non-equilibrium Thermodynamics in Geometrized Theories of Gravitation with Curvature and Torsion, dissertaion.de Verlag im Internet, Dissertation, FakultÅt II, TU Berlin, D83(2003).

  27. G. RÝckner, Relativistic Constitutive Theory in Riemannian Geometry, dissertaion.de Verlag im Internet, Dissertation, FakultÅt II, TU Berlin, D83(2003).

  28. H. Herrmann, G. RÝcknerand W. Muschik, Rendiconti del Seminario Matematico dell'Universit<InsCDATA@1> e Politecnico di Torino 58, 141-146 (2000).

    Google Scholar 

  29. H. Herrmann, G. RÝcknerand W. Muschik, Rendiconti del Seminario Matematico dell'Universit<InsCDATA@1> e Politecnico di Torino 58, 133-140 (2000).

    Google Scholar 

  30. H. Herrmann, G. RÝckner, W. Muschikand H.-H. v. Borzeszkowski, Theor. Appl. Mech., 28–29, 169-183(2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-H. von Borzeszkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrmann, H., Muschik, W., Rückner, G. et al. Spin Axioms in Different Geometries of Relativistic Continuum Physics. Foundations of Physics 34, 1005–1021 (2004). https://doi.org/10.1023/B:FOOP.0000034226.19527.0e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOOP.0000034226.19527.0e

Keywords

Navigation