Skip to main content
Log in

A Minimal Framework for Non-Commutative Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Deformation quantisation is applied to ordinary Quantum Mechanics by introducing the star product in a configuration space combining a Riemannian structure with a Poisson one. A Hilbert space compatible with such a configuration space is designed. The dynamics is expressed by a Hermitian Hamiltonian containing a scalar potential and a one-form potential. As a simple illustration, it is shown how a particular type of non-commutativity of the star product is interpretable as generating the Zeeman effect of ordinary Quantum Mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weyl, H.: The Theory of Groups and Quantum Mechanics. Dover, New York (1931)

    MATH  Google Scholar 

  2. Wigner, E.P.: Quantum corrections for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    Article  ADS  Google Scholar 

  3. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Camb. Phil. Soc. 45, 99–124 (1949)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Dito, G., Sternheimer, D.: Deformation quantization: genesis, developments and metamorphoses. In: Halbout, G. (ed.) Deformation Quantization. IRMA Lectures in Mathematical and Theoretical Physics 1, pp. 9–54. Walter de Gruyter, Berlin (2002)

    Google Scholar 

  5. Konstevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  6. Felder, G., Shoikhet, B.: Deformation quantization with traces. Lett. Math. Phys. 53, 75–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hurley, D., Vandyck, M.: \({\mathfrak{D}}\)-Differentiation and the structure of Quantum Mechanics. Found. Phys. 39, 433–473 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Hurley, D., Vandyck, M.: \({\mathfrak{D}}\)-Differentiation and the structure of Quantum Mechanics Part II: accelerated observers and fictitious forces. Found. Phys. 41, 667–685 (2011)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Kupriyanov, V., Vassilievich, D.: Star products made (somewhat) easier. Eur. Phys. J. C 58, 627–637 (2008)

    Article  MATH  ADS  Google Scholar 

  10. Zotov, A.: On relation between Weyl and Konstevich quantum products. Direct evaluation up to the \(\hbar ^3\)-order. Mod. Phys. Lett. A 16, 615–625 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  11. Fedosov, B.: A simple geometrical construction of deformation quantization. J. Differ. Geom. 40, 213–218 (1994)

    MathSciNet  MATH  Google Scholar 

  12. McCurdy, S., Zumino, B.: Covariant star product for exterior differential forms on symplectic manifolds. AIP Conf. Proc. 1200, 204–214 (2010)

    Article  ADS  Google Scholar 

  13. Chaichian, M., Oksanen, M., Tureanu, A., Zet, G.: Covariant star product on symplectic and Poisson spacetime manifolds. Int. J. Mod. Phys. A 25, 3765–3796 (2010)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Hawkins, E.: Noncommutative rigidity. Commun. Math. Phys. 246, 211–235 (2004)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Hawkins, E.: The structure of noncommutative deformations. J. Differ. Geom. 77, 385–424 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Pinzul, A., Stern, A.: Gauge theory of the star product. Nuclear Phys. B 791, 284–297 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Kupriyanov, V.: A hydrogen atom on curved noncommutative space. J. Phys. A 46, 1–7 (2013)

    Article  MathSciNet  Google Scholar 

  18. Abraham, R., Marsden, J., Ratiu, T.: Manifolds, Tensor Analysis, and Applications. Springer, New York (1988)

    Book  MATH  Google Scholar 

  19. Grosse, H., Wulkenhaar, R.: Renormalization of noncommutative Quantum Field Theory. In: Khalkhali, M., Marcolli, M. (eds.) Noncommutative Geometry. World Scientific, Singapore (2008)

    Google Scholar 

  20. Bagchi, B., Fring, A.: Minimal length in quantum mechanics and non-Hermitian Hamiltonian systems. Phys. Lett. A 373, 4307–4310 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Göckeler, M., Schücker, T.: Differential Geometry, Gauge Theories, and Gravity. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  22. Gasiorowicz, S.: Quantum Mechanics. Wiley, New York (1974)

    Google Scholar 

  23. Kupriyanov, V.: Quantum mechanics with coordinate dependent noncommutativity. J. Math. Phys. 54, 112105–112124 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  24. Fring, A., Gouba, L., Scholtz, F.G.: Strings from position-dependent noncommutativity. J. Phys. A 43, 345401–345410 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. J. Hurley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurley, D.J., Vandyck, M.A. A Minimal Framework for Non-Commutative Quantum Mechanics. Found Phys 44, 1168–1187 (2014). https://doi.org/10.1007/s10701-014-9835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9835-8

Keywords

Mathematics Subject Classification

Navigation