Skip to main content
Log in

Does the period table appear doubled? Two variants of division of elements into two subsets. Internal and secondary periodicity

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

Demarcation of elements for two subsets appears to be the most fundamental approach to their classification. If one draws a vertical straight line through the middle of each block of elements in the Periodic table, all the elements are divided into two subsets: “early” and “later”. For example, in the d-block, the early ones are Sc–Mn, and the late ones, respectively, are Fe–Zn. Later elements partially repeat the properties of the early ones, and this is defined as the internal periodicity. Another criterion for dividing the elements into two subsets is the evenness and oddness of the sum of n + l, where n is the principal quantum number, and l is the orbital quantum number for the outer electron subshells. Properties of the odd elements (for example, B–Ne, Ga–Kr, Tl–Rn in the p-block) are closer to each other than to properties of even elements (Al–Ar, In–Xe), and vice versa. This regularity is manifested as the secondary periodicity. The history of concepts, which considered the existence of subsets as well as of inner and secondary periodicities, is discussed. The features of the electronic structure, which underlie the existence of subsets, are considered. The existence of subsets was depicted earlier by dividing the periodic table into two tables or by applying a mirror-symmetric table. Small changes are proposed in the conventional Periodic table, allowing to reflect the existence of the considered subsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Here and below the modern group numbers in the medium-long Periodic Table 1 are given in brackets.

  2. But "anomalous valences" is clearly a chemical property, however is determined by the degree of filling of d- and f-subshells.

  3. This, of course, does not mean that the chemists deny the very phenomenon of internal periodicity.

  4. It impossible to be completely sure about this issue: it is not realistic to explicitly consider all spectrum of periodic tables, given that their number is close to a thousand (Scerri 2007, p. 277, 2011a, p. 13, b; Imyanitov 2011c).

  5. It should be noted that many symmetric tables have been proposed, which do not have these drawbacks, for example, see the Bayley–Thomsen–Bohr table (Imyanitov (2011c, p. 2190). However, the symmetry line (also implicitly) passes through the middle of the periods (but not through the middle of the rows in blocks) does not divide the elements into early and late in this tables.

  6. Based on the heats of formation of the corresponding compounds.

  7. In modern variants (Table 1), there are no subgroups in periodic tables, subgroups correspond to groups.

  8. According to modern terminology, "secondary periodicity is observed in all groups".

  9. Therefore, sometimes absence of "primogenic repulsion" is mentioned instead of the term "kainosimmetry" (Pyykkö 2001, 1988, p. 567). The emphasis on the absence of a radial nodes is made in some publications (Shchukarev 1977; Kaupp 2007).

  10. It may be useful to consider Tables 5 as an aggregate of 4-th subsets: early with odd n + l, early with even n + l, late with odd n + 1, late with even n + l.

References

  • Alternative Periodic Table.: The Chemogenesis web book, The INTERNET Database of Periodic Tables. Curator: M.R. Leach (2017). http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=739. Accessed 23 Feb 2017

  • Balarev, D., Andreev, S.T.: Broader regularity in the periodic system. Annuaire Univ. Sofia. II Fac. Sci. 46 (Livre 2), 159–175 (1950). (in Bulgarian)

    Google Scholar 

  • Basolo, F., Pearson, R.G.: Mechanisms of Inorganic Reactions: A Study of Metal Complexes in Solution, 2nd edn. Wiley, New York (1967)

    Google Scholar 

  • Bent, H.: New Ideas in Chemistry from Fresh Energy for the Periodic Law. AuthorHouse, Bloomington (2006)

    Google Scholar 

  • Berkengejm, A.M.: Theoretical Foundations of Chemistry, p. 146. GIZ, Moskow-Leningrad (1926). (in Russian)

    Google Scholar 

  • Biltz, W., Klemm, W.: Die Unterteilung der Reichen der Übergangselemente. Ztsch. Elektrochem. 39, 597–598 (1933)

    Google Scholar 

  • Biron, E.V.: Phenomena of secondary periodicity. Zh. Russ. Fiz.-Khim. Obshch. Ch. Khim. 47, 964–988 (1915). (in Russian)

    Google Scholar 

  • Bohr, N.: On the constitution of atoms and molecules. Philos. Mag. 1798–1977(26), 1–24 (1913)

    Article  Google Scholar 

  • Brandt, S., Dahmen, H.D.: The Picture Book of Quantum, 4th edn, p. 251. Springer, New York (2012)

    Book  Google Scholar 

  • Brauner, B.: Über die Stellung der Elemente der seltenen Erden im periodischen System. Ztsch. Elektrochem. 14, 525–527 (1908)

    Article  Google Scholar 

  • Burdett, N.A., Hayhurst, A.N.: Determination of the rate coefficients of A + X = A+ + X- and AX + M = A+ X- + M where A is a metal atom, X a halogen atom and M a flame species. Philos. Trans. Royal Soc. (Lond.) Ser. A. 290, 299–325 (1979)

    Article  Google Scholar 

  • Cartledge, G.H.: The correlation of thermochemical data by the ionic potential. J. Phys. Colloid Chem. 55, 248–256 (1951)

    Article  Google Scholar 

  • Cerasoli, E.: The periodic system and Pauli’s exclusion principle. Chimica nell’Industria, nell’Agricoltura, nella Biologia e nelle Realizzazioni Corporative. 17, 37–43 (1941)

    Google Scholar 

  • Chistyakov, V.M.: “Secondary Periodicity of Biron” in secondary d-subgroups of the short periodic table. Zh. Obshch. Khim. 38, 209–210 (1968). (in Russian)

    Google Scholar 

  • Didyk, Y. K.: Derivation of the periodic law on the basis of quantum mechanics. The existence of mirror-symmetric sets of elements. In: Sb. Nauchn. Trudov Noril’sk. Vech. Industr. In-ta. Krasnoyarsk. 15, 37–62 (1973). (in Russian)

  • Didyk, Y.K., Makarenya A.A., Sukhomlinov B.D.: Experimental substantiation of the division of a set of elements into two symmetrical subsets. In: Sadovskij G.I. (ed.) Dobycha i pererabotka rud tsvetnykh metallov, pp. 117–122. Izd-vo Noril’sk. Vech. Industr. In-t., Noril’sk, (1978). (in Russian)

  • Didyk, Y.K.: Periodic systems of elements, conservation laws and corresponding similarity groups. In: Tyukhtin V.S., Urmantsev Yu.A. (eds.) Sistema. Simmetriya. Garmoniya, pp. 244–260. Mysl’, Moscow (1988). (in Russian)

  • Didyk, Yu. K., Astaf’eva E.M.: Mirror symmetry in the structure of an atom and periodicity of elements. Khimizdat, Sankt-Peterburg (Russia). (2008). (in Russian)

  • Frackiewicz, K., Czerwinski, M., Siekierski, S.: Secondary periodicity in the tetrahalogeno complexes of the group 13 elements. Eur. J. Inorg. Chem. 19, 3850–3856 (2005)

    Article  Google Scholar 

  • Ghanty, T.K., Ghosh, S.K.: Spin-polarized generalization of the concepts of electronegativity and hardness and the description of chemical binding. J. Am. Chem. Soc. 116, 3943–3948 (1994)

    Article  Google Scholar 

  • Ghosh, S.K.: Electronegativity, hardness, and a semiempirical density functional theory of chemical binding. Int. J. Quant. Chem. 49, 239–251 (1994)

    Article  Google Scholar 

  • Goldschmidt, V. M., Barth, T., Lunde, G.: Geochemical distribution law of the elements. V. Isomorphy and polymorphy of the sesquioxides. The contraction of the “lanthanums” and its consequences. Skrifter Norske Videnskaps. Akad. Oslo., 1 Mat.-Nat. Kl., 7, 59 pp. (1925). Chem. Abstr. 19, 3391(1925)

  • Gorbunov, A. I., Filippov, G. G.: Fine Structure of D. I. Mendeleev Periodic Table: secondary periodicity, early and late elements. Khim-ya Tekhnol. 11, 43–45 (2001). (in Russian)

  • Gurin, V.E.: Element property diagrams of a new form and the phenomenon of secondary periodicity. Zh. Obshch. Khim. 64, 367–370 (1994). (in Russian)

    Google Scholar 

  • Habashi, F.: Metals: typical and less typical, transition and inner transition. Found. Chem. 12, 31–39 (2010)

    Article  Google Scholar 

  • Han, F.: A Modern Course in University Physics, p. 588. World Scientific Publishing Co., Singapore (2017)

    Book  Google Scholar 

  • Hart, D.: Periodicity of chemical thermodynamic functions. J. Phys. Colloid Chem. 56, 202–214 (1952)

    Article  Google Scholar 

  • Hildebrand, J.H.: The alternations in stability of compounds of the elements of group V. J. Chem. Educ. 18, 291–292 (1941)

    Article  Google Scholar 

  • Imyanitov, N.S.: Dialectic functions for description and prediction of proton affinity and basicity in gas phase. Russ. J. Org. Chem. 37, 1196–1204 (2011a)

    Article  Google Scholar 

  • Imyanitov, N.S.: Dialectic functions for description and prediction of proton affinity and basicity in gas phase. Russ. J. Org. Chem. 37, 1196–1204 (2011b). (in Russian)

    Article  Google Scholar 

  • Imyanitov, N.S.: The periodic law. Formulations, equations, graphic representations. Russ. J. Inorg. Chem. 56, 2183–2200 (2011c)

    Article  Google Scholar 

  • Imyanitov, N.S.: Adequacy of the new formulation of the Periodic Law when fundamental variations occur in blocks and periods. Found. Chem. 16, 235–247 (2014)

    Article  Google Scholar 

  • Imyanitov, N.S.: Dialectics and synergetics in chemistry. Periodic Table and oscillating Reactions. Found. Chem. 18, 21–56 (2016a)

    Article  Google Scholar 

  • Imyanitov, N.S.: Spiral as the fundamental graphic representation of the Periodic Law. Blocks of elements as the autonomic parts of the Periodic System. Found. Chem. 18, 153–173 (2016b)

    Article  Google Scholar 

  • Janes, R., Moore, E.A.: Metal-Ligand Bonding. Roy. Soc. Chem. Bath Press, Glasgow (2004)

    Google Scholar 

  • Jørgensen, C.K.: Energy Levels of Complexes and Gaseous Ions, (Ph.D Thesis, University of Copenhagen), Gjellerups Forlag, Copenhagen (1957)

  • Jorgensen, K.: Oxidation numbers and oxidation states, p. 49. Springer, London (1969)

    Book  Google Scholar 

  • Kablukov, I.A.: Thermochemistry. ONTI, Moskow-Leningrad (1934). (in Russian)

    Google Scholar 

  • Kaupp, M.: The role of radial nodes of atomic orbitals for chemical bonding and the periodic table. J. Comput. Chem. 28, 320–325 (2007)

    Article  Google Scholar 

  • Kerr, J.A.: Strenghts of Chemical Bonds. In: Linde D.R. (ed-in-chief) CRC Handbook of Chemistry and Physics, 85th ed., pp. 9–52–9–64. CRC Press, Boca Raton etc (2004–2005)

  • Klemm, W.: Eine Systematik der seltenen Erden, begründet auf periodischen Eigenschaftsänderungen ihrer Ionen. Ztschr. anorg. allgem. Chem. 184, 345–351 (1929)

    Article  Google Scholar 

  • Klemm, W., Bommer, A.: Zur Kenntnis der Metalle der seltenen Erden. Ztschr. anorg. allgem. Chem. 231, 138–171 (1937)

    Article  Google Scholar 

  • Klemm, W.: Zur Systematik der seltenen Erden. Angew. Chem. 51(575–576), 577–581 (1938)

    Article  Google Scholar 

  • Klemm, W., Westlinning, H.: Untersuchungen über die Verbindungen der Magnesiums mit den Elementen der IVb-Gruppe. Ztschr. anorg. allgem. Chem. 245, 365–380 (1941)

    Article  Google Scholar 

  • Klemm, W.: Die Bedeutung “halbbesetzter” Elektronenkonfigurationen für die Chemie. Chemiker Ztg. 66, 365–368 (1942)

    Google Scholar 

  • Korableva, T.P., Korol’kov, D.V.: Theory of the Periodic System. Izd-vo SPbU, St. Petersburg (2005). (in Russian)

  • Korol’kov, D.V., Skorobogatov, G.A.: Theoretical Chemistry. 2nd ed. p. 84. Izd-vo SPbU, St. Petersburg (2005). (in Russian)

  • Kramida, A., Ralchenko, Yu., Reader, J., NIST ASD Team.: NIST Atomic Spectra Database (ver. 5.2), Ground States and Ionization Energies (Online). National Institute of Standards and Technology, Gaithersburg, MD. http://physics.nist.gov/PhysRefData/ASD/ionEnergy.html (2014). Accessed 22 March 2017

  • Lakatos, B.: Transition metal contraction and double contraction. Naturwissensch 41, 355–356 (1954)

    Article  Google Scholar 

  • Lakatos, B.: Periodicity of the chemical thermodynamic properties of compounds. Acta Chim. Acad. Scient. Hung. 8, 207–231 (1955)

    Google Scholar 

  • Li, Jiping, He, H.: Explanation for secondary periodicity using quantum chemical relativistic effects. Huaxue Yanjiu Yu Yingyong 8, 581–584 (1996). (in Chinese)

    Google Scholar 

  • Magomedov, M.N.: The correlation of the parameters of interatomic interaction in crystals with the position of atom in the periodic table. High Temp. 46, 484–494 (2008)

    Article  Google Scholar 

  • Mazurs’ 1967 Formulation. The Chemogenesis web book, The INTERNET Database of Periodic Tables. Curator: M.R. Leach (1967). http://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=298. Accessed 23 Feb 2017

  • Mazurs, E.G.: Graphic Representations of the Periodic System During One Hundred Years, 2nd edn, p. 127. University of Alabama Press, Ala (1974)

    Google Scholar 

  • Mel’nikov, V.P., Dmitriev, I.S.: Additional Types of Periodicity in the D. I. Mendeleev’s Periodic System. Nauka, Moscow (1988). (in Russian)

  • Meyer, R.J.: Die stellung der elemente der seltenen erden im periodischen system. Naturwissensch 2, 781–787 (1914)

    Article  Google Scholar 

  • Morozova, M.P., Li Myao-syu, Golomolzina M.V.: The enthalpy of formation of strontium compounds with elements of the main subgroup of the IV group. Vestn. Leningr. Gos. Un-ta 102, 83–86 (1959). (in Russian)

  • Mosander, C.: On the new metals, lanthanium and didymium, which are associated with cerium, and on erbium and terbium, new metals associated with yttria. Philos. Mag. [3] 23, 241–254 (1843)

  • Neubert, D.: Double Shell Structure of the Periodic System of the Elements. Z. Naturforsch. 25a, 210–217 (1970)

  • Noddak W., Brukl, A.: Zur Klemmschen Systematik der seltenen Erden. Angew. Chem. 51, 576–577, 581(1938)

  • Odabasi, H.: Some evidence about the dynamical group SO(4, 2) symmetries of the periodic table of elements. Int. J. Quant. Chem. Symp. 7, 23–33 (1973)

    Article  Google Scholar 

  • Ostrovsky, V.N.: Dynamic symmetry of atomic potential. J. Phys. B. 14, 4425–4439 (1981)

    Article  Google Scholar 

  • Panchenko, YuN, Abramenkov, A.V., De, George R., Maré, G.R.: Vibrational spectra and ab initio analysis of tert-butyl, trimethylsilyl, trimethylgermyl, trimethylstannyl and trimethylplumbyl derivatives of 3,3-dimethylcyclopropene. XI. Secondary periodicity. Spectrochim. Acta 73A, 782–786 (2009)

    Article  Google Scholar 

  • Drits M.E. (Ed): Properties of elements, Handbook, 3rd edn., vol 1, pp. 21, 23. Ruda i Metally, Moscow (2003)

  • Pyykkö, P., Desclaux, J.P.: Relativity and the periodic system of elements. Acc. Chem. Res. 12, 276–281 (1979)

    Article  Google Scholar 

  • Pyykkö, P.: On the interpretation of ‘secondary periodicity’ in the periodic system. J. Chem. Res. Synopses 11, 380–381 (1979)

    Google Scholar 

  • Pyykkö, P.: Relativistic effects in structural chemistry. Chem. Rev. 88, 563–594 (1988)

    Article  Google Scholar 

  • Pyykkö, P.: A note on nodal structures, partial screening, and periodic trends among alkali metals and alkaline earths. Int. J. Quant. Chem. 85, 18–21 (2001)

    Article  Google Scholar 

  • Rabinowitsch, E., Thilo, E: Periodisches System. Geschichte und Theorie. S, p. 261. F. Enke, Stuttgart (1930)

    Google Scholar 

  • Roth, W.A., Becker, G.: Ordnungszahl und bildungswärme. Ztschr. Phys. Chem. A. 159, 1–26 (1932)

    Google Scholar 

  • Rutherford, E.: Scattering of alpha and beta particles of matter and the structure of the atom. Phil. Mag. 1798–1977(21), 669–689 (1911)

    Article  Google Scholar 

  • Sanderson, R.T.: An explanation of chemical variations within periodic major groups. J. Am. Chem. Soc. 74, 4792–4794 (1952a)

    Article  Google Scholar 

  • Sanderson, R.T.: Stability of nonpolar covalent bonds. J. Chem. Phys. 20, 535 (1952b)

    Article  Google Scholar 

  • Scerri, E.R.: Presenting the left-step periodic table. Edu. Chem. 42, 135–136 (2005a)

    Google Scholar 

  • Scerri, E.R.: Editorial 21. Found. Chem. 7, 199–202 (2005b)

    Article  Google Scholar 

  • Scerri, E.R.: The periodic table: its story and its significance. Oxford University Press, New York (2007)

    Google Scholar 

  • Scerri, E.R.: A very short introduction to the periodic table. Oxford University Press, Oxford (2011a)

    Book  Google Scholar 

  • Scerri, E.R.: A review of research on the history and philosophy of the periodic table. \ Una revisio´n de investigaciones sobre la historia y la filosofı´a de la tabla perio´dica. J. Sci. Educ. 12, 4–7 (2011b)

    Google Scholar 

  • Scerri, E.: Mendeleev’s periodic table is finally completed and what to do about group 3? Chem. Int. 28–31, July–August (2012)

  • Scerri, E.R., Parsons, W.: What elements belong in group 3 of the periodic table? In: Scerri E., Restrepo G. (eds.) Mendeleev to oganesson. A multidisciplinary perspective on the periodic table, pp. 140–151. Oxford Univ Press, New York, NY (2018)

    Google Scholar 

  • Siekierski, S.: Ionic Radii: effect of shell radius, cation charge and lone electron pair. Commun. Inorg. Chem. 19, 121–131 (1997)

    Article  Google Scholar 

  • Shchukarev, S.A., Vasil’kova, I.V.: The phenomenon of secondary periodicity on the example of magnesium compounds with elements of the main subgroup of the IV group in the D.I. Mendeleev system. Vestn. Leningr. Gos. Un-ta. 2–1, 115–120 (1953). (in Russian)

  • Shchukarev, S.A.: The periodic properties of electronic orbits of free atoms, and the relation of such periodicity with the properties of elements, chemical compounds, and solutions of electrolytes. Vestn. Leningr. Gos. Un-ta 11–4, 127–151 (1954a). (in Russian)

    Google Scholar 

  • Shchukarev, S.A.: D. I. Mendeleev’s periodic law as a basic principle of modern chemistry. Zh. Obshch. Khim. 24, 595–603 (1954b)

    Google Scholar 

  • Shchukarev, S.A.: D. I. Mendeleev’s periodic law as a basic principle of modern chemistry. Zh. Obshch. Khim. 24, 581–592 (1954c). (in Russian)

    Google Scholar 

  • Shchukarev, S.A., Morozova, M.P., Prokof’eva, E.A.: Higher barium phosphides. Zh. Obshch. Khim. 24, 1261–1262 (1954a)

    Google Scholar 

  • Shchukarev, S.A., Morozova, M.P., Prokof’eva, E.A.: Higher barium phosphides. Zh. Obshch. Khim. 24, 1277–1278 (1954b). (in Russian)

    Google Scholar 

  • Shchukarev, S.A., Grossman, G., Morozova, M.P.: The enthalpy of formation of zinc phosphide, Zn3P2. Zh. Obshch. Khim. 25, 607–608 (1955a)

    Google Scholar 

  • Shchukarev, S.A., Grossman, G., Morozova, M.P.: The enthalpy of formation of zinc phosphide, Zn3P2. Zh. Obshch. Khim. 25, 633–634 (1955b). (in Russian)

    Google Scholar 

  • Shchukarev, S.A.: Modern significance of D. I. Mendeleev’s periodic law and prospects for development. In: Semenov, N. N. (ed) Sto Let Period. Zakona Khim. Elem., Dokl. Plenarnykh Zased., Yubileinyi Mendeleev. S’ezd, 10th. pp. 40–53. Nauka, Moscow (1971). (in Russian)

  • Shchukarev, S.A.: New views of D.I. Mendeleev’s system. I. Periodicity of the stratigraphy of atomic electronic shells in the system, and the concept of kainosymmetry. Zh. Obshch. Khim. 47, 246–259 (1977)

    Google Scholar 

  • Shishokin, V.P.: Secondary periodicity in the periodic chart of D. I Mendeleev. Zh. Obshch. Khim. 23, 929–933 (1953a)

    Google Scholar 

  • Shishokin, V.P.: Secondary periodicity in the periodic chart of D. I Mendeleev. Zh. Obshch. Khim. 23, 889–893 (1953b). (in Russian)

    Google Scholar 

  • Thomsen, J.: Systematishe Durchtfuhrung thermochemischer Untersuchunden. S. 152. 160, 171. F. Enke, Stuttgart (1906)

  • Thyssen, P., Binnemans, K.: Accommodation of the rare earths in the periodic table: a historical analysis. In: Gschneidner, K. A, Jr. (ed) Handbook on the Physics and Chemistry of Rare Earths 41, 1–93 (2011)

  • Thyssen, P., Ceulemans, A.: Shattered symmetry: group theory from the eightfold way to the periodic table, pp. 380, 412; tabl. 13.7. Oxford University Press, Oxford (2016)

  • Trifonov, D.N.: Afterword of the editor. In: Mel’nikov, V.P., Dmitriev, I.S.: Additional types of periodicity in the D. I. Mendeleev’s periodic system. Nauka, Moscow (1988). (in Russian)

  • Urmantsev, YuA: Poly- and isomorphism in living and inanimate nature. Voprosy Filosofii 12, 77–88 (1968). (in Russian)

    Google Scholar 

  • Urmantsev, Y.A.: Symmetry of system and system of symmetry. Comp. & Maths with Appls. 12B, Iss. 1/2, 379–405 (1986)

  • Urmantsev, Y.A.: General theory of systems: state, applications and development prospects. In: Tyukhtin V.S., Urmantsev Yu.A. (eds.) Sistema. Simmetriya. Garmoniya. pp. 38–130. Mysl’, Moscow (1988). (in Russian)

  • Vyatkin, V.B.: Orbital system of distribution of electrons in atom and structure of periodic system of elements. Nauchnyj Zh. Kubansk. Gos. Agrarn. Un-ta. 89 (05), 1–34 (2013). (in Russian)

  • Wang, S.-G., Schwarz, W.H.E.: Icon of chemistry: the periodic system of chemical elements in the new century. Angew. Chem. Int. Ed. 48, 3404–3415 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naum S. Imyanitov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imyanitov, N.S. Does the period table appear doubled? Two variants of division of elements into two subsets. Internal and secondary periodicity. Found Chem 21, 255–284 (2019). https://doi.org/10.1007/s10698-018-9321-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-018-9321-z

Keywords

Navigation