Skip to main content
Log in

The Proof that Maxwell Equations with the 3D E and B are not Covariant upon the Lorentz Transformations but upon the Standard Transformations: The New Lorentz Invariant Field Equations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

In this paper the Lorentz transformations (LT) and the standard transformations (ST) of the usual Maxwell equations (ME) with the three-dimensional (3D) vectors of the electric and magnetic fields, E and B, respectively, are examined using both the geometric algebra and tensor formalisms. Different 4D algebraic objects are used to represent the usual observer dependent and the new observer independent electric and magnetic fields. It is found that the ST of the ME differ from their LT and consequently that the ME with the 3D E and B are not covariant upon the LT but upon the ST. The obtained results do not depend on the character of the 4D algebraic objects used to represent the electric and magnetic fields. The Lorentz invariant field equations are presented with 1-vectors E and B, bivectors E Hv and B Hv and the abstract tensors, the 4-vectors Ea and Ba. All these quantities are defined without reference frames, i.e., as absolute quantities. When some basis has been introduced, they are represented as coordinate-based geometric quantities comprising both components and a basis. It is explicitly shown that this geometric approach agrees with experiments, e.g., the Faraday disk, in all relatively moving inertial frames of reference, which is not the case with the usual approach with the 3D bf E and B and their ST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ivezić (2003) Found. Phys. 33 1339 Occurrence Handle2004k:78003

    MathSciNet  Google Scholar 

  2. T. Ivezić, physics/0304085.

  3. H. A. Lorentz, Proceedings of the Academy of Sciences of Amsterdam 6 (1904), W. Perrett and G. B. Jeffery, eds., in The Principle of Relativity (Dover, New York, 1952)

  4. A. Einstein, Ann. Physik. 17, 891 (1905), tr. W. Perrett and G. B. Jeffery eds. in The Principle of Relativity (Dover, New York, 1952)

  5. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1977), 2nd edn.; L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, Oxford, 1979), 4th edn.;

  6. C.W. Misner K.S. Thorne J.A. Wheeler (1970) Gravitation Freeman San Francisco

    Google Scholar 

  7. D. Hestenes, Space–Time Algebra (Gordon & Breach, New York, 1966); Space–Time Calculus; available at: http://modelingnts.la. asu.edu/evolution. html; New Foundations for Classical Mechanics (Kluwer Academic, Dordrecht, 1999), 2nd. edn.; Am. J Phys. 71, 691 (2003)

  8. C. Doran A. Lasenby (2003) Geometric Algebra for Physicists Cambridge University Press Cambridge

    Google Scholar 

  9. B. Jancewicz (1989) Multivectors and Clifford Algebra in Electrodynamics World Scientific Singapore

    Google Scholar 

  10. T. Ivezić, physics/0305092.

  11. T. Ivezić (2001) Found. Phys. 31 1139 Occurrence Handle2002m:83004

    MathSciNet  Google Scholar 

  12. T. Ivezić (2002) Found. Phys. Lett. 15 27 Occurrence Handle2002m:83005

    MathSciNet  Google Scholar 

  13. T. Ivezić, physics/0311043

  14. M. Riesz, Clifford Numbers and Spinors, Lecture Series No. 38, The Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, MD (1958)

  15. T. Ivezić, hep-th/0207250; hep-ph/0205277

  16. A. Einstein, Ann. Physik 49, 769 (1916), translated by W. Perrett and G. B. Jeffery, in The Principle of Relativity (Dover, New York, 1952)

  17. H.N. Núñez Yépez A.L. Salas Brito C.A. Vargas (1988) Revista Mexicana de Física 34 636

    Google Scholar 

  18. T. Matolcsi (1993) Spacetime without Reference Frames Akadémiai Kiadó Budapest

    Google Scholar 

  19. D. Hestenes G. Sobczyk (1984) Clifford Algebra to Geometric Calculus Reidel Dordrecht

    Google Scholar 

  20. T. Ivezić (2002) Ann. Fond. Louis de Broglie 27 287 Occurrence Handle2004b:83004

    MathSciNet  Google Scholar 

  21. S. Esposito (1998) Found. Phys. 28 231 Occurrence Handle10.1023/A:1018752803368 Occurrence Handle99a:78013

    Article  MathSciNet  Google Scholar 

  22. T. Ivezić, Found. Phys. Lett. 12, 105 (1999); Found. Phys. Lett. 12, 507 (1999)

  23. R.M. Wald (1984) General Relativity Chicago University Chicago

    Google Scholar 

  24. M. Ludvigsen, General Relativity, A Geometric Approach (Cambridge University, Cambridge, 1999). S. Sonego and M. A. Abramowicz, J. Math. Phys. 39, 3158 (1998). D. A. T. Vanzella, G. E. A. Matsas, H. W. Crater, Am. J. Phys. 64, 1075 (1996)

  25. F. Rohrlich (1966) Nuovo Cimento B 45 76 Occurrence Handle0139.45503

    MATH  Google Scholar 

  26. A. Gamba (1967) Am. J. Phys. 35 83 Occurrence Handle10.1119/1.1973974

    Article  Google Scholar 

  27. G. Saathoff et al., Phys. Rev. Lett. 91, 190403 (2003). H. Müller et al. Phys. Rev. Lett. 91, 020401 (2003). P. Wolf et al. Phys. Rev. Lett. 90, 060402 (2003)

  28. W.K.H. Panofsky M. Phillips (1962) Classical electricity and magnetism EditionNumber2 Addison-Wesley Reading, MA

    Google Scholar 

  29. L. Nieves M. Rodriguez G. Spavieri E. Tonni (2001) Nuovo Cimento B 116 585 Occurrence Handle2001NCimB.116..585N

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomislav Ivezić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivezić, T. The Proof that Maxwell Equations with the 3D E and B are not Covariant upon the Lorentz Transformations but upon the Standard Transformations: The New Lorentz Invariant Field Equations. Found Phys 35, 1585–1615 (2005). https://doi.org/10.1007/s10701-005-6484-y

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-005-6484-y

Keywords

Navigation