Skip to main content
Log in

Ramified Frege Arithmetic

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

Abstract

Øystein Linnebo has recently shown that the existence of successors cannot be proven in predicative Frege arithmetic, using Frege’s definitions of arithmetical notions. By contrast, it is shown here that the existence of successor can be proven in ramified predicative Frege arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boolos, G. (1998). Frege’s theorem and the Peano postulates. In Jeffrey, R. (Ed.), Logic, logic, and logic (pp. 291–300). Cambridge: Harvard University Press.

    Google Scholar 

  2. Boolos, G. (1998). On the proof of Frege’s theorem. In Jeffrey, R. (Ed.), Logic, logic, and logic (pp. 275–291). Cambridge: Harvard University Press.

    Google Scholar 

  3. Boolos, G. (1998). Reading the Begriffsschrift. In Jeffrey, R. (Ed.), Logic, logic, and logic (pp. 155–170). Cambridge: Harvard University Press.

    Google Scholar 

  4. Boolos, G., & Heck, R. G. (1998). Die Grundlagen der Arithmetik §§82–83. In Jeffrey, R. (Ed.), Logic, logic, and logic (pp. 315–338). Cambridge: Harvard University Press.

    Google Scholar 

  5. Burgess, J. P. (2005). Fixing Frege. Princeton: Princeton University Press.

    Google Scholar 

  6. Burgess, J. P., & Hazen, A. (1998). Arithmetic and predicative logic. Notre Dame Journal of Formal Logic, 39, 1–17.

    Article  Google Scholar 

  7. Dedekind, R. (1963). The nature and meaning of numbers. In Essays on the theory of numbers. New York: Dover. Tr by W. W. Beman.

    Google Scholar 

  8. Ferreira, F. (2005). Amending Frege’s Grundgesetze der Arithmetik. Synthese, 147, 3–19.

    Article  Google Scholar 

  9. Frege, G. (1966). Grundgesetze der arithmetik. Hildeshiem: Georg Olms Verlagsbuchhandlung.

    Google Scholar 

  10. Hajék, P., & Pudlák, P. (1993). Metamathematics of first-order arithmetic. New York: Springer-Verlag.

    Google Scholar 

  11. Hale, B., & Wright, C. (2001). The reason’s proper study. Oxford: Clarendon.

    Google Scholar 

  12. Heck, R. G. (1993). The development of arithmetic in Frege’s Grundgesetze der Arithmetik. Journal of Symbolic Logic, 58, 579–601.

    Article  Google Scholar 

  13. Heck, R. G. (1995). Definition by induction in Frege’s Grundgesetze der Arithmetik. In Demopoulos, W. (Ed.), Frege’s philosophy of mathematics (pp. 295–333). Cambridge: Harvard University Press.

    Google Scholar 

  14. Heck, R. G. (1997). Finitude and Hume’s principle. Journal of Philosophical Logic, 26, 589–617.

    Article  Google Scholar 

  15. Heck, R. G. (1997). The Julius Caesar objection. In R. Heck (Ed.), Language, thought, and logic: Essays in honour of Michael Dummett (pp. 273–308). Oxford: Clarendon Press.

    Google Scholar 

  16. Heck, R. G. (2000). Counting, cardinality, and equinumerosity. Notre Dame Journal of Formal Logic, 41, 187–209.

    Article  Google Scholar 

  17. Linnebo, Ø. (2004). Predicative fragments of Frege arithmetic. Bulletin of Symbolic Logic, 10, 153–174.

    Article  Google Scholar 

  18. Wright, C. (1983). Frege’s conception of numbers as objects. Aberdeen: Aberdeen University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard G. Heck Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heck, R.G. Ramified Frege Arithmetic. J Philos Logic 40, 715–735 (2011). https://doi.org/10.1007/s10992-010-9158-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10992-010-9158-y

Keyword

Navigation