Skip to main content
Log in

The probability of majority inversion in a two-stage voting system with three states

  • Published:
Theory and Decision Aims and scope Submit manuscript

Abstract

Two-stage voting is prone to majority inversions, a situation in which the outcome of an election is not backed by a majority of popular votes. We study the probability of majority inversion in a model with two candidates, three states and uniformly distributed fractions of supporters for each candidate. The model encompasses equal or distinct population sizes, with equal, population-based or arbitrary voting weights in the second stage. We prove that, when no state can dictate the outcome of the election by commanding a voting weight in excess of one half, the probability of majority inversion increases with the size disparity among the states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For example, ten candidates ran for office in each of the three recent elections: 2008, 2012, 2016.

  2. Miller (2012) documents inversions in legislative elections in the British-type or Westminster parliamentary systems. For parliamentary elections contested by more than two parties, one can ensure that the voters face a choice between two alternatives using the typical left–right ideological dichotomy to define the outcome.

  3. We are aware of the fact that the actual weights used by the U.S. Electoral College do not accurately reflect the relative difference in the population among the states. Nevertheless, weighting electoral votes by the population is the intended design. The current allocation of votes to the states is based on the 2010 Census and applies to the 2012, 2016 and 2020 presidential elections.

  4. For a discussion of the Penrose square-root rule, see Felsenthal and Machover (1998).

  5. The theoretical background for the methods used in LattE is elaborated in Loera et al. (2013).

References

  • Baldoni, V., Berline, N., De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., Vergne, M., & Wu, J. (2014). A user’s guide for LattE integrale v1.7.2. https://www.math.ucdavis.edu/~latte

  • Casella, G., & Berger, R. L. (2002). Statistical inference. Belmont: Duxbury Press.

    Google Scholar 

  • De Loera, J. A., Dutra, B., Köppe, M., Moreinis, S., Pinto, G., & Wu, J. (2013). Software for exact integration of polynomials over polyhedra. Computational geometry: Theory and applications, 46, 232–252.

    Article  Google Scholar 

  • De Mouzon, O., Laurent, T., Le Breton, M., & Lepelley, D. (2017). The theoretical Shapley–Shubik probability of an election inversion in a toy symmetric version of the U.S. presidential electoral system. Working Paper.

  • Feix, M. R., Lepelley, D., Merlin, V. R., & Rouet, J.-L. (2004). The probability of conflicts in a U.S. presidential type election. Economic Theory, 23, 227–257.

    Article  Google Scholar 

  • Felsenthal, D. S., & Machover, M. (1998). The measurement of voting power: Theory and practice, problems and paradoxes. Cheltenham: Edward Elgar.

    Book  Google Scholar 

  • Kikuchi, K. (2016). The likelihood of majority inversion in an indirect voting system. Waseda University–School of Political Science and Economics. Working Paper.

  • Lepelley, D., Merlin, V. R., & Rouet, J.-L. (2011). Three ways to compute accurately the probability of the referendum paradox. Mathematical Social Sciences, 62, 28–33.

    Google Scholar 

  • Lepelley, D., Merlin, V. R., Rouet, J.-L., & Vidu, L. (2014). Referendum paradox in a federal union with unequal populations: The three state case. Economics Bulletin, 34, 2201–2207.

    Google Scholar 

  • Marshall, A. W., Olkin, I., & Arnold, B. C. (2011). Inequalities: Theory of majorization and its applications. New York: Springer.

    Book  Google Scholar 

  • May, K. (1948). Probabilities of certain election results. The American Mathematical Monthly, 55, 203–209.

    Article  Google Scholar 

  • Miller, N. R. (2012). Election inversions by the U.S. Electoral College. In D. S. Felsenthal & M. Machover (Eds.), Electoral Systems. Studies in Choice and Welfare (pp. 93–127). Berlin: Springer.

    Google Scholar 

  • Straffin, P. D. (1977). Homogeneity, independence and power indices. Public Choice, 30, 107–118.

    Article  Google Scholar 

  • Yitzhaki, S., & Schechtman, E. (2013). The Gini methodology: A primer on a statistical methodology. Springer series in statistics (Vol. 272). New York: Springer.

    Google Scholar 

Download references

Acknowledgements

We would like to thank Michel Le Breton for constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei Kaniovski.

Appendices

Appendix A: Proof of Theorem 1 (probability of inversion)

If \(v_{[1]}\le \frac{1}{2}\), then the probability of majority inversion

figure a

Each summand can be expressed as a multiple integral

$$\begin{aligned} P_i=\frac{2}{w_1w_2w_3}\mathop {\int \int \int }\limits _{A_i}dxdydz\quad \text{ for }\quad i=1,2,3, \end{aligned}$$

evaluated over the following convex polytopes

$$\begin{aligned} A_1&=\{(x,y,z) : x\in (0,\tfrac{w_1}{2}), y\in (0,\tfrac{w_2}{2}), z\in (0,\tfrac{w_3}{2}), x>y+z\},\\ A_2&=\{(x,y,z) : x\in (0,\tfrac{w_1}{2}), y\in (0,\tfrac{w_2}{2}), z\in (0,\tfrac{w_3}{2}), y>x+z\},\\ A_3&=\{(x,y,z) : x\in (0,\tfrac{w_1}{2}), y\in (0,\tfrac{w_2}{2}), z\in (0,\tfrac{w_3}{2}), z>x+y\}. \end{aligned}$$

Here, we use the fact that if \(x_i\sim U(-\frac{1}{2},\frac{1}{2})\), then also \(-x_i\sim U(-\frac{1}{2},\frac{1}{2})\) for \(i=1,2,3\).

Assume \(w_1\ge w_2\ge w_3\). Eliminating y yields

figure b

where the transformed integration regions are given by

$$\begin{aligned} A'_1&=\left\{ (x,z) : x\in (0,\tfrac{w_1}{2}), z\in (0,\tfrac{w_3}{2}), 0<x-z<\tfrac{w_2}{2}\right\} ,\\ A''_1&=\left\{ (x,z) : x\in (0,\tfrac{w_1}{2}), z\in (0,\tfrac{w_3}{2}), x-z\ge \tfrac{w_2}{2}\right\} ,\\ A'_2&=\left\{ (x,z) : x\in (0,\tfrac{w_1}{2}), z\in (0,\tfrac{w_3}{2}), x+z<\tfrac{w_2}{2}\right\} ,\\ A'_3&=\left\{ (x,z) : x\in (0,\tfrac{w_1}{2}), z\in (0,\tfrac{w_3}{2}), z-x>0\right\} . \end{aligned}$$

The integrals corresponding to \(P_2\) and \(P_3\) evaluate as

$$\begin{aligned} P_2&=\frac{2}{w_1w_2w_3}\int ^{\frac{w_3}{2}}_0dz\int ^{\frac{w_2}{2}-z}_0\left( \frac{w_2}{2}-x-z\right) dx\\&=\frac{1}{w_1w_2w_3}\int ^{\frac{w_3}{2}}_0\left( \frac{w_2}{2}-z\right) ^2dz= \frac{3w^2_2-3w_2w_3+w^2_3}{24w_1w_2},\\ P_3&=\frac{2}{w_1w_2w_3}\int ^{\frac{w_3}{2}}_0dz\int ^z_0(z-x)dx=\frac{1}{w_1w_2w_3}\int ^{\frac{w_3}{2}}_0z^2dz=\frac{w^2_3}{24w_1w_2}. \end{aligned}$$

The value of \(P_1\) depends on whether the largest weight exceeds \(\frac{1}{2}\).

If \(w_1>\frac{1}{2}\), then

$$\begin{aligned} P_1&=\frac{2}{w_1w_2w_3}\int ^{\frac{w_3}{2}}_0dz\int ^{z+\frac{w_2}{2}}_ z(x-z)dx+\frac{1}{w_1w_3}\int ^{\frac{w_3}{2}}_0dz\int ^{\frac{w_1}{2}}_{z +\frac{w_2}{2}}dx\\&=\frac{w_2}{4w_1w_3}\int ^{\frac{w_3}{2}}_0dz+\frac{1}{w_1w_3} \int ^{\frac{w_3}{2}}_0\left( \frac{w_1-w_2}{2}-z\right) dz=\frac{2w_1-w_2-w_3}{8w_1}. \end{aligned}$$

If \(w_1\le \frac{1}{2}\), then

$$\begin{aligned} P_1&=\frac{2}{w_1w_2w_3}\int ^{\frac{w_1-w_2}{2}}_0dz\int ^{z+\frac{w_2}{2}} _z(x-z)dx+\frac{2}{w_1w_2w_3}\int _ {\frac{w_1-w_2}{2}}^{\frac{w_3}{2}}dz\int ^{\frac{w_1}{2}}_z(x-z)dx\\&\quad +\frac{1}{w_1w_3}\int ^{\frac{w_1-w_2}{2}}_0dz\int ^{\frac{w_1}{2}}_{ z+\frac{w_2}{2}}dx=\frac{w_2}{4w_1w_3}\int ^{\frac{w_1-w_2}{2}}_0dz\\&\quad +\frac{1}{w_1w_2w_3}\int _{\frac{w_1-w_2}{2}}^{\frac{w_3}{2}}\left( \frac{w_1}{2}-z\right) ^2dz\\&\quad +\frac{1}{w_1w_3}\int ^{\frac{w_1-w_2}{2}}_0\left( \frac{w_1-w_2}{2}- z\right) dz=\frac{w_1-w_2}{8w_3}+\frac{w^2_2}{24w_1w_3}-\frac{w^2_1}{24w_2w_3}\\&\quad +\frac{w_1-w_3}{8w_2}+\frac{w^2_3}{24w_1w_2}. \end{aligned}$$

Therefore, if \(w_1>\frac{1}{2}\), then

$$\begin{aligned} P(w_1,w_2,w_3)= & {} \frac{3w^2_2-3w_2w_3+2w^2_3}{24w_1w_2}+\frac{2w_1-w_2-w_3}{8w_1}\\= & {} \frac{1}{4}-\frac{w_3}{4w_1}+\frac{w^2_3}{12w_1w_2}, \end{aligned}$$

or else

$$\begin{aligned} P(w_1,w_2,w_3)&=\frac{3w^2_2-3w_2w_3+2w^2_3}{24w_1w_2}+\frac{w_1-w_2}{8w_3} +\frac{w^2_2}{24w_1w_3}-\frac{w^2_1}{24w_2w_3}\\&\quad +\frac{w_1-w_3}{8w_2} +\frac{w^2_3}{24w_1w_2}\\&=\frac{w_1-w_2}{8w_3}+\frac{w_1-w_3}{8w_2}+\frac{w_2-w_3}{8w_1} -\frac{w^2_1}{24w_2w_3}\\&\quad +\frac{w^2_2}{24w_1w_3}+\frac{3w^2_3}{24w_1w_2}. \end{aligned}$$

Consider the case \(v_{[1]}>\frac{1}{2}\). As before, let \(w_1\ge w_2\ge w_3\).

(i) If \(v_{[1]}=v_1\), then the probability of majority inversion

figure c

Thus, \(P'_2=P_2, P'_3=P_3\). For \(P'_1\), we have

$$\begin{aligned} P'_1=\frac{2}{w_1w_2w_3}\mathop {\int \int \int }\limits _Adxdydz, \end{aligned}$$

where \(A=\{(x,y,z) : x\in (0,\tfrac{w_1}{2}), y\in (0,\tfrac{w_2}{2}), z\in (0,\tfrac{w_3}{2}), x<y+z\}\). Since \(P'_1=\frac{1}{4}-P_1\),

$$\begin{aligned} P(w_1,w_2,w_3)&=\frac{w_2}{4w_1}+\frac{w_3^2}{12w_1w_2} \text{ for } w_1>\frac{1}{2},\\ P(w_1,w_2,w_3)&=\frac{1}{4}-\frac{w_1-w_2}{8w_3}-\frac{w_1-w_3}{8w_2}+\frac{w_2-w_3}{8w_1}+\frac{w^2_1}{24w_2w_3}-\frac{w^2_2}{24w_1w_3}\\&\quad +\frac{w^2_3}{24w_1w_2} \text{ for } w_1\le \frac{1}{2}. \end{aligned}$$

(ii) If \(v_{[1]}=v_2\), then the probability of majority inversion

figure d

Here \(P''_1=P_1, P''_2=\frac{1}{4}-P_2, P''_3=P_3\). Therefore,

$$\begin{aligned} P(w_1,w_2,w_3)&=\frac{1}{2}-\frac{w_2}{4w_1} \text{ for } w_1>\frac{1}{2},\\ P(w_1,w_2,w_3)&=\frac{1}{4}+\frac{w_1-w_2}{8w_3}+\frac{w_1-w_3}{8w_2}-\frac{w_2-w_3}{8w_1}-\frac{w^2_1}{24w_2w_3}\\&\quad +\frac{w^2_2}{24w_1w_3}+\frac{w^2_3}{24w_1w_2} \text{ for } w_1\le \frac{1}{2}. \end{aligned}$$

(iii) If \(v_{[1]}=v_3\), then the probability of majority inversion

figure e

Here \(P'''_1=P_1, P'''_2=P_2, P'''_3=\frac{1}{4}-P_3\). Thus,

$$\begin{aligned} P(w_1,w_2,w_3)&=\frac{1}{2}-\frac{w_3}{4w_1} \text{ for } w_1>\frac{1}{2},\\ P(w_1,w_2,w_3)&=\frac{1}{4}+\frac{w_1-w_2}{8w_3}+\frac{w_1-w_3}{8w_2}+\frac{w_2-w_3}{8w_1}-\frac{w^2_1}{24w_2w_3}\\&\quad +\frac{w^2_2}{24w_1w_3}+\frac{w^2_3}{24w_1w_2} \text{ for } w_1\le \frac{1}{2}. \end{aligned}$$

Appendix B: Proof of Theorem 2 (Schur-convexity)

Assume for simplicity that \(w_1\ge w_2\ge w_3\). To prove that \(P(w_1,w_2,w_3)\) is Schur-convex, we use Lemma 1 to show that

  1. (a)

    \(P(w_1,w_2+\varepsilon ,w_3-\varepsilon )\) is an increasing function of \(\varepsilon \) in \(0\le \varepsilon \le \min \{w_1-w_2,w_3\}\);

  2. (b)

    \(P(w_1+\varepsilon ,w_2-\varepsilon ,w_3)\) is an increasing function of \(\varepsilon \) in \(0\le \varepsilon \le w_2-w_3\).

Part (a).

If \(w_1>w_2+w_3\), then

$$\begin{aligned} P(w_1,w_2+\varepsilon ,w_3-\varepsilon )=\frac{1}{4}-\frac{w_3-\varepsilon }{4w_1} +\frac{(w_3-\varepsilon )^2}{12w_1(w_2+\varepsilon )}, \end{aligned}$$

and the derivative

$$\begin{aligned} \frac{dP(w_1,w_2+\varepsilon ,w_3-\varepsilon )}{d\varepsilon } =\frac{1}{12w_1}\left( 4-\frac{(w_2+w_3)^2}{(w_2+\varepsilon )^2}\right) >0. \end{aligned}$$

The inequality follows since \(\frac{w_2+w_3}{w_2+\varepsilon }<2\) due to \(w_2-w_3+2\varepsilon >0\).

If \(w_1\le w_2+w_3\), then from

$$\begin{aligned} P(w_1,w_2+\varepsilon ,w_3-\varepsilon )&=\frac{w_1-w_2-\varepsilon }{8(w_3-\varepsilon )}+\frac{w_1-w_3+\varepsilon }{8(w_2+\varepsilon )} +\frac{w_2-w_3+2\varepsilon }{8w_1}\\&\quad -\frac{w^2_1}{24(w_2+\varepsilon )(w_3-\varepsilon )}+\frac{(w_2 +\varepsilon )^2}{24w_1(w_3-\varepsilon )}\\&\quad +\frac{3(w_3-\varepsilon )^2}{24w_1(w_2 +\varepsilon )} \end{aligned}$$

we obtain

$$\begin{aligned} 24w_1P(w_1,w_2+\varepsilon ,w_3-\varepsilon )&=6w_1-2w_2-10w_3+8\varepsilon \\&\quad +\frac{3w_1(w_1-w_2-w_3)+(w_2+w_3)^2-\frac{w^3_1}{w_2+w_3}}{w_3-\varepsilon }\\&\quad +\frac{3w_1(w_1-w_2-w_3)+3(w_2+w_3)^2-\frac{w^3_1}{w_2+w_3}}{w_2+\varepsilon }, \end{aligned}$$

and the derivative

$$\begin{aligned} 24w_1\frac{dP(w_1,w_2+\varepsilon ,w_3-\varepsilon )}{d\varepsilon }&=8 +\frac{3w_1(w_1-w_2-w_3)+(w_2+w_3)^2-\frac{w^3_1}{w_2+w_3}}{(w_3-\varepsilon )^2}\\&\quad -\frac{3w_1(w_1-w_2-w_3)+3(w_2+w_3)^2-\frac{w^3_1}{w_2+w_3}}{(w_2+\varepsilon )^2}. \end{aligned}$$

The expression in the numerator of the first fraction is non-negative:

$$\begin{aligned} 3w_1(2w_1-1)+(1-w_1)^2-\frac{w^3_1}{1-w_1}=\frac{(1-2w_1)^3}{1-w_1}\ge 0. \end{aligned}$$

Therefore,

$$\begin{aligned}&24w_1\frac{dP(w_1,w_2+\varepsilon ,w_3-\varepsilon )}{d\varepsilon }\\&\quad \ge 8+\frac{3w_1(w_1-w_2-w_3)+(w_2+w_3)^2-\frac{w^3_1}{w_2+w_3}}{(w_2+\varepsilon )^2}\\&\quad -\frac{3w_1(w_1-w_2-w_3)+3(w_2+w_3)^2-\frac{w^3_1}{w_2+w_3}}{(w_2+\varepsilon )^2}=8-\frac{2(w_2+w_3)^2}{(w_2+\varepsilon )^2}>0. \end{aligned}$$

Part (b).

If \(w_1+2\varepsilon >w_2+w_3\), then

$$\begin{aligned} P(w_1+\varepsilon ,w_2-\varepsilon ,w_3)=\frac{1}{4}-\frac{w_3}{4(w_1+\varepsilon )} +\frac{w^2_3}{12(w_1+\varepsilon )(w_2-\varepsilon )}, \end{aligned}$$

and

$$\begin{aligned} \frac{dP(w_1+\varepsilon ,w_2-\varepsilon ,w_3)}{d\varepsilon }=\frac{w_3}{4(w_1 +\varepsilon )^2}+\frac{w^2_3(w_1-w_2+2\varepsilon )}{12(w_1+\varepsilon )^2(w_2-\varepsilon )^2}\ge 0. \end{aligned}$$

If \(w_1+2\varepsilon \le w_2+w_3\), then

$$\begin{aligned} P(w_1+\varepsilon ,w_2-\varepsilon ,w_3)&=\frac{w_1-w_2+2\varepsilon }{8w_3}+\frac{w_1-w_3+\varepsilon }{8(w_2-\varepsilon )}+\frac{w_2-w_3-\varepsilon }{8(w_1+\varepsilon )}\\&\quad -\frac{(w_1+\varepsilon )^2}{24(w_2-\varepsilon )w_3}+\frac{(w_2-\varepsilon )^2}{24(w_1+\varepsilon )w_3}\\&\quad +\frac{3w^2_3}{24(w_1+\varepsilon )(w_2-\varepsilon )}. \end{aligned}$$

Consequently,

$$\begin{aligned} 24w_3P(w_1+\varepsilon ,w_2-\varepsilon ,w_3)&=4w_1-4w_2-6w_3+8\varepsilon \\&\quad +\frac{3w_3(w_1+w_2-w_3)+\frac{3w^3_3}{w_1+w_2}-(w_1+w_2)^2}{w_2-\varepsilon }\\&\quad +\frac{3w_3(w_1+w_2-w_3)+\frac{3w^3_3}{w_1+w_2}+(w_1+w_2)^2}{w_1+\varepsilon }. \end{aligned}$$

The derivative

$$\begin{aligned}&24w_3\frac{dP(w_1+\varepsilon ,w_2-\varepsilon ,w_3)}{d\varepsilon }\\&\quad =8+\frac{3w_3(w_1+w_2-w_3)+\frac{3w^3_3}{w_1+w_2}-(w_1+w_2)^2}{(w_2-\varepsilon )^2}\\&\qquad -\frac{3w_3(w_1+w_2-w_3)+\frac{3w^3_3}{w_1+w_2}+(w_1+w_2)^2}{(w_1+\varepsilon )^2}\\&\quad =8-\frac{2(w_1+w_2)^2}{(w_2-\varepsilon )^2}+A\left( \frac{1}{(w_2-\varepsilon )^2}-\frac{1}{(w_1+\varepsilon )^2}\right) , \end{aligned}$$

where \(A=3w_3(1-2w_3)+\frac{3w^3_3}{1-w_3}+(1-w_3)^2\). We show that

$$\begin{aligned} A\frac{(w_1-w_2+2\varepsilon )(w_1+w_2)}{(w_1+\varepsilon )^2(w_2-\varepsilon )^2}\ge & {} 2\left[ \left( \frac{w_1+\varepsilon }{w_2-\varepsilon }+1\right) ^2-2^2\right] \\= & {} \frac{2(w_1-w_2+2\varepsilon )(w_1+3w_2-2\varepsilon )}{(w_2-\varepsilon )^2}, \end{aligned}$$

or, equivalently,

$$\begin{aligned} 2(w_2-\varepsilon )^2(3(1-w_3)-2(w_2-\varepsilon ))\ge 1-6w_3+12w^2_3-10w^3_3. \end{aligned}$$

The expression on the left-hand side is not smaller than \(4(\frac{1}{2}-w_3)^2(1-w_3)\) since \(w_2-\varepsilon \ge \frac{1}{2}-w_3\), \(2(w_2-\varepsilon )\le 1-w_3\). But \(4(\frac{1}{2}-w_3)^2(1-w_3)=1-5w_3+8w^2_3-4w^3_3\ge 1-6w_3+12w^2_3-10w^3_3\), as \((1-5w_3+8w^2_3-4w^3_3)-(1-6w_3+12w^2_3-10w^3_3)=w_3(1-4w_3+6w^2_3)=w_3((1-2w_3)^2+2w^2_3)\ge 0\).

Appendix C: The upper bound on the probability for EC

Again, assume \(w_1\ge w_2\ge w_3\). In part (b) of Appendix B we have established that the function \(P(w_1+\varepsilon ,w_2-\varepsilon ,w_3)\) is increasing of \(\varepsilon \) in \(0\le \varepsilon \le w_2-w_3\) for EC if \(w_1+2\varepsilon \le w_2+w_3\). For EC, we show that if \(w_1+2\varepsilon >w_2+w_3\), the function \(P(w_1+\varepsilon ,w_2-\varepsilon ,w_3)\) is decreasing in \(\varepsilon \) for \(0\le \varepsilon \le w_2-w_3\). Indeed,

$$\begin{aligned} P(w_1+\varepsilon ,w_2-\varepsilon ,w_3)=\frac{w_2-\varepsilon }{4(w_1 +\varepsilon )}+\frac{w^2_3}{12(w_1+\varepsilon )(w_2-\varepsilon )} \end{aligned}$$

implies

$$\begin{aligned} \frac{dP(w_1+\varepsilon ,w_2-\varepsilon , w_3)}{d\varepsilon }=\frac{(w_1-w_2+2\varepsilon )w^2_3-3(w_1+w_2)(w_2-\varepsilon )^2}{12(w_1+\varepsilon )^2(w_2-\varepsilon )^2}. \end{aligned}$$

Denote \(X=w_2-\varepsilon \). Let us show that \(3(w_1+w_2)X^2+2w^2_3X-(w_1+w_2)w^2_3>0\) for \(X\in [w_3,w_2]\). The roots \(X_{1,2}\) of the quadratic are

$$\begin{aligned} X_{1,2}=\frac{-w^2_3\pm \sqrt{w^4_3+3(w_1+w_2)^2w^2_3}}{3(w_1+w_2)} \end{aligned}$$

with the largest root being smaller than \(w_3\). It follows that \(w^*_1=\frac{1}{2}\) maximizes \(P(w_1,w_2,w_3)\).

The function

$$\begin{aligned} P\left( \frac{1}{2},w_2,\frac{1}{2}-w_2\right) =\frac{w_2}{2}+\frac{(\frac{1}{2}-w_2)^2}{6w_2},\quad \frac{1}{4}\le w_2\le \frac{1}{2} \end{aligned}$$

is increasing in \(w_2\), and so it is maximized for \(w^*_2=\frac{1}{2}\), because

$$\begin{aligned} \frac{dP(\frac{1}{2},w_2,\frac{1}{2}-w_2)}{dw_2}=\frac{2}{3}-\frac{1}{24w^2_2}=\frac{2}{3}\left( 1-\frac{1}{16w^2_2}\right)>0 \text{ for } w_2>\frac{1}{4}. \end{aligned}$$

Consequently, \(\mathop {{{\mathrm{arg\,max}}}}\limits _{(w_1,w_2,w_3)} P(w_1,w_2,w_3)=(\frac{1}{2},\frac{1}{2},0)\) and \(\max \limits _{(w_1,w_2,w_3)} P(w_1,w_2,w_3)=\frac{1}{4}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaniovski, S., Zaigraev, A. The probability of majority inversion in a two-stage voting system with three states. Theory Decis 84, 525–546 (2018). https://doi.org/10.1007/s11238-018-9660-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11238-018-9660-1

Keywords

Navigation