Skip to main content
Log in

A continuity principle equivalent to the monotone \(\Pi ^{0}_{1}\) fan theorem

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

The strong continuity principle reads “every pointwise continuous function from a complete separable metric space to a metric space is uniformly continuous near each compact image.” We show that this principle is equivalent to the fan theorem for monotone \(\varPi ^{0}_{1}\) bars. We work in the context of constructive reverse mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczel, P., Rathjen, M.: Notes on constructive set theory. Tech. Rep. 40, Institut Mittag-Leffler (2000/2001)

  2. Berger, J.: The fan theorem and uniform continuity. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) New Computational Paradigms, CiE 2005. Lecture Notes in Computer Science, vol. 3526, pp. 18–22. Springer, Berlin (2005). https://doi.org/10.1007/11494645_3

  3. Berger, J.: The logical strength of the uniform continuity theorem. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) Logical Approaches to Computational Barriers, CiE 2006. Lecture Notes in Computer Science, vol. 3988, pp. 35–39. Springer, Berlin (2006). https://doi.org/10.1007/11780342_4

  4. Berger, J.: A separation result for varieties of Brouwer’s fan theorem. In: Proceedings of the 10th Asian Logic Conference, pp. 85–92. World Scientific Publishing (2010). https://doi.org/10.1142/9789814293020_0003

  5. Berger, J., Bridges, D.: A bizarre property equivalent to the \(\Pi ^0_1\)-fan theorem. Log. J. IGPL 14(6), 867–871 (2006). https://doi.org/10.1093/jigpal/jzl026

    Article  MathSciNet  MATH  Google Scholar 

  6. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  7. Bridges, D.: Constructive Functional Analysis. Research Notes in Mathematics, vol. 28. Pitman, London (1979)

    MATH  Google Scholar 

  8. Bridges, D., Vîţă, L.S.: Techniques of Constructive Analysis. Universitext. Springer, New York (2006). https://doi.org/10.1007/978-0-387-38147-3

    MATH  Google Scholar 

  9. Diener, H., Loeb, I.: Sequences of real functions on \([0,1]\) in constructive reverse mathematics. Ann. Pure Appl. Logic 157(1), 50–61 (2009). https://doi.org/10.1016/j.apal.2008.09.018

    Article  MathSciNet  MATH  Google Scholar 

  10. Ishihara, H.: Constructive reverse mathematics: compactness properties. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis: Towards Practicable Foundations for Constructive Mathematics, no. 48 in Oxford Logic Guides, pp. 245–267. Oxford University Press, Oxford (2005). https://doi.org/10.1093/acprof:oso/9780198566519.003.0016

    Chapter  Google Scholar 

  11. Ishihara, H.: Reverse mathematics in Bishop’s constructive mathematics. Philos. Sci. Cah. Spéc. 6, 43–56 (2006). https://doi.org/10.4000/philosophiascientiae.406

    Google Scholar 

  12. Lubarsky, R.S., Diener, H.: Separating the fan theorem and its weakenings. In: Artemov, S., Nerode, A. (eds.) Logical Foundations of Computer Science, LFCS 2013. Lecture Notes in Computer Science, vol. 7734, pp. 280–295. Springer, Berlin, (2013). https://doi.org/10.1007/978-3-642-35722-0_20

  13. Schuster, P.: What is continuity, constructively? J. UCS 11(12), 2076–2085 (2005). https://doi.org/10.3217/jucs-011-12-2076

    MathSciNet  MATH  Google Scholar 

  14. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction. Volume I. Studies in Logic and the Foundations of Mathematics, vol. 121. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  15. Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics: An Introduction. Volume II. Studies in Logic and the Foundations of Mathematics, vol. 123. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Josef Berger and Makoto Fujiwara for useful discussions. I also thank Hajime Ishihara and Takako Nemoto for helpful comments. This work was carried out while the author was INdAM-COFUND-2012 fellow of Istituto Nazionale di Alta Matematica “F. Severi”(INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuji Kawai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawai, T. A continuity principle equivalent to the monotone \(\Pi ^{0}_{1}\) fan theorem. Arch. Math. Logic 58, 443–456 (2019). https://doi.org/10.1007/s00153-018-0644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-018-0644-1

Keywords

Mathematics Subject Classification

Navigation