Skip to main content

Advertisement

Log in

Integrating Epistemological Perspectives on Chemistry in Chemical Education: The Cases of Concept Duality, Chemical Language, and Structural Explanations

  • Published:
Science & Education Aims and scope Submit manuscript

Abstract

In this paper, we trace the work of some philosophers of chemistry to draw some implications for the improvement of chemical education. We examine some key features of chemical knowledge, and how these features are relevant for school chemistry teaching and learning. In particular, we examine Laszlo’s (Foundations of Chemistry 1:225–238, 1999) notion of concept duality, Jacob’s (HYLE–International Journal for Philosophy of Chemistry 7:31–50, 2001) descriptions of chemical language and Goodwin’s (Foundations of Chemistry 10:117–127, 2008) explication of structural explanations in organic chemistry to highlight the particular ways in which chemical knowledge is structured. We use examples of textbooks and curricula to illustrate that even though the mentioned aspects of are relevant to and are covered in educational contexts, the philosophical dimensions of this coverage is absent in textbooks and curricula. The emphasis in the use of these features of chemical knowledge seems to be more on the conceptual definitions rather than on their “epistemological nature”. We argue that chemical education will be improved through the inclusion of the philosophical perspectives in chemistry teaching and learning by highlighting the specific ways in which chemical knowledge functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Cetin, P. S., Kaya, E., & Geban, O. (2009). ‘Facilitating conceptual change in gases concepts. Journal of Science Education and Technology, 18(2), 130–137.

    Article  Google Scholar 

  • Dursun, M. F., Gulbay, I., Cetin, S., & Tek, U. (2008). Ortaogretim 9. Sinif Kimya Ders Kitabi. Istanbul: Milli Egitim Bakanligi Yayinlari.

    Google Scholar 

  • Dursun, M. F., Gulbay, I., Cetin, S., Tek, U., Ozkoc, F. F., & Guntut, M. (2010a). Ortaogretim 10. Sinif Kimya Ders Kitabi (2nd ed.). Istanbul: Milli Egitim Bakanligi Yayinlari.

    Google Scholar 

  • Dursun, M. F., Gulbay, I., Ozkoç, F. F., Tek, U., & Guntut, M. (2010b). Ortaogretim 11. Sinif Kimya Ders Kitabi. Istanbul: Milli Egitim Bakanligi Yayinlari.

    Google Scholar 

  • Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.

    Google Scholar 

  • Ebbing, D. D., & Gammon, S. D. (2002). General chemistry. Boston, NY: Houghton Mifflin Company.

    Google Scholar 

  • Erduran, S. (2001). Philosophy of chemistry: An emerging field with ımplications for chemistry education. Science & Education, 10(6), 581–593.

    Article  Google Scholar 

  • Erduran, S. (2005). Applying the philosophical concept of reduction to the chemistry of water: Implications for chemical education. Science & Education, 14(2), 161–171.

    Article  Google Scholar 

  • Erduran, S. (2006). Promoting ideas, evidence and argument in initial science teacher training. School Science Review, 87(321), 45–50.

    Google Scholar 

  • Erduran, S. (2007). Breaking the law: Promoting domain-specificity in science education in the context of arguing about the periodic law in chemistry. Foundations of Chemistry, 9(3), 247–263.

    Article  Google Scholar 

  • Erduran, S., & Scerri, E. (2003). The nature of chemical knowledge and chemical education. In J. Gilbert, O. de Jong, R. Justi, D. Treagust, & J. van Driel (Eds.), Chemical education: Towards research-based practice. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Erduran, S., Aduriz-Bravo, A., & Mamlok-Naaman, R. (2007). Developing epistemologically empowered teachers: Examining the role of philosophy of chemistry in teacher education. Science & Education, 16(9–10), 975–989.

    Article  Google Scholar 

  • Erduran, S., & Jimenez-Aleixandre, M. P. (Eds.). (2008). Argumentation in science education: Perspectives from classroom-based research. Dordrecht: Springer.

  • Erturk, A. T., & Karahan, A. (2009). Ortaogretim 12. Sinif Kimya Ders Kitabi. Istanbul: Milli Egitim Bakanligi Yayinlari.

    Google Scholar 

  • Goodwin, W. M. (2008). Structural formulas and explanation in organic chemistry. Foundations of Chemistry, 10, 117–127.

    Article  Google Scholar 

  • Harrison, A., & Treagust, D. (2000). Learning about atoms, molecules and chemical bonds: A case study of multiple model use in grade 11 chemistry. Science Education, 84, 352–381.

    Article  Google Scholar 

  • Jacob, C. (2001). Interdependent operations in chemical language and practice. HYLE–International Journal for Philosophy of Chemistry, 7(1), 31–50.

    Google Scholar 

  • Kelly, G., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314–342.

    Article  Google Scholar 

  • Laszlo, P. (1999). Circulation of concepts. Foundations of Chemistry, 1, 225–238.

    Article  Google Scholar 

  • Lemke, J. (1990). Talking science: Language, learning and values. NJ: Ablex, Norwood.

    Google Scholar 

  • MEB. (2007). Ortaögretim Kimya Dersi Ogretim Programi (9., 10., 11. ve 12. siniflar). Ankara, Turkiye: Milli Egitim Bakanligi.

    Google Scholar 

  • MEC. (2007). Science curriculum. Santiago, Chile: Ministry of Education.

    Google Scholar 

  • Metcalfe, J., & Shimamura, A. P. (1994). Metacognition: Knowing about knowing. Cambridge, MA: MIT Press.

    Google Scholar 

  • National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  • Niaz, M. (2000). A rational reconstruction of the kinetic molecular theory of gases based on history and philosophy of science and its implications for chemistry textbooks. Instructional Science, 28, 23–50.

    Article  Google Scholar 

  • Partington, J. R. (1957). A short history of chemistry (3rd ed.). New York: MacMillan.

    Google Scholar 

  • Psarros, N. (1996). Die chemische reaktion als kalkuel. In P. Janich & N. Psarros (Eds.), Die Sprache der Chemie – 2. Erlenmeyer-Kolloquium zur Philosophie der Chemie. Wuerzburg: Koningshausen & Neumann.

  • Scerri, E. (1996). Stephen brush, the periodic table and the nature of chemistry. In P. Janich & N. Psarros (Eds.), 2nd Erlenmeyer Colloquium on the Philosophy of Chemistry. Marburg University, Wurtzburg: Koningshausen & Neumann.

    Google Scholar 

  • Scerri, E. (1997). Are chemistry and philosophy miscible? Chemical Intelligencer, 3, 44–46.

    Google Scholar 

  • Scerri, E. R., & McIntryre, L. (1997). The case for the philosophy of chemistry. Synthese, 111, 213–232.

    Article  Google Scholar 

  • van Brakel, J. (2000). Philosophy of chemistry. Leuven: Leuven University Press.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebru Kaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaya, E., Erduran, S. Integrating Epistemological Perspectives on Chemistry in Chemical Education: The Cases of Concept Duality, Chemical Language, and Structural Explanations. Sci & Educ 22, 1741–1755 (2013). https://doi.org/10.1007/s11191-011-9399-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11191-011-9399-3

Keywords

Navigation