Skip to main content
Log in

Imperfect Cloning Operations in Algebraic Quantum Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

No-cloning theorem says that there is no unitary operation that makes perfect clones of non-orthogonal quantum states. The objective of the present paper is to examine whether an imperfect cloning operation exists or not in a C*-algebraic framework. We define a universal \(\epsilon \)-imperfect cloning operation which tolerates a finite loss \(\epsilon \) of fidelity in the cloned state, and show that an individual system’s algebra of observables is abelian if and only if there is a universal \(\epsilon \)-imperfect cloning operation in the case where the loss of fidelity is less than \(1/4\). Therefore in this case no universal \(\epsilon \)-imperfect cloning operation is possible in algebraic quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, P.M.: A note on the transition probability over C*-algebras. Lett. Math. Phys. 7, 25–32 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Alberti, P.M., Uhlmann, A.: Stochastic linear maps and transition probability. Lett. Math. Phys. 7, 107–112 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Araki, H., Raggio, G.A.: A remark on transition probability. Lett. Math. Phys. 6, 237–240 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bures, D.: An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite W*-algebras. Trans. Am. Math. Soc. 135, 199–212 (1969)

    MathSciNet  MATH  Google Scholar 

  5. Bužek, V., Hillery, M.: Quantum copying: Beyond the no-cloning theorem. Phys. Rev. A. 54, 1844–1852 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. Clifton, R., Bub, J., Halvorson, H.: Characterizing quantum theory in terms of information-theoretic constraints. Found. Phys. 33, 1561–1591 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dieks, D.: Communication by EPR devices. Phys. Lett. 92, 271–272 (1982)

    Article  Google Scholar 

  8. Haag, R., Kastler, D.: An algebraic approach to quantum field theory. J. Math. Phys. 5, 848 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Horuzhy, S.S.: Introduction to Algebraic Quantum Field Theory. Springer, Berlin (1990)

    MATH  Google Scholar 

  10. Kadison, R. V. and Ringrose, J. R.: Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary theory. American Mathematical Society (1983)

  11. Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras, Vol. Advanced theory. American Mathematical Society, II (1983)

  12. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  13. Paulsen, V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  14. Promislow, D.: The Kakutani theorem for tensor products of W*-algebras. Pac. J. Math. 36, 507–514 (1971)

    Article  MathSciNet  Google Scholar 

  15. Raggio, G.A.: Comparison of Uhlmann’s transition probability with the one induced by the natural positive cone of von Neumann algebras in standard form. Lett. Math. Phys. 6, 233–236 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Roberts, J.E., Roepstorff, G.: Some basic concepts of algebraic quantum theory. Commun. Math. Phys. 11, 321–338 (1969)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Roos, H.: Independence of local algebras in quantum field theory. Commun. Math. Phys. 16, 238–246 (1970)

    Article  ADS  MATH  Google Scholar 

  18. Takesaki, M.: Theory of Operator Algebras I. Springer, Berlin (2002)

    MATH  Google Scholar 

  19. Uhlmann, A.: The “transition probability” in the state space of a *-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Uhlmann, A.: The transition probability for states of *-algebras. Ann. Phys. 497, 524–532 (1985)

    Article  MathSciNet  Google Scholar 

  21. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Izumi Ojima and Yutaka Shikano for helpful comments on an earlier draft. The author is supported by the JSPS KAKENHI, No.23701009 and the John Templeton Foundation Grant ID 35771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichiro Kitajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitajima, Y. Imperfect Cloning Operations in Algebraic Quantum Theory. Found Phys 45, 62–74 (2015). https://doi.org/10.1007/s10701-014-9843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9843-8

Keywords

Navigation