Skip to main content

On the Expressive Power of TeamLTL and First-Order Team Logic over Hyperproperties

  • Conference paper
  • First Online:
Logic, Language, Information, and Computation (WoLLIC 2021)

Abstract

In this article we study linear temporal logics with team semantics (\(\mathrm {TeamLTL}\)) that are novel logics for defining hyperproperties. We define Kamp-type translations of these logics into fragments of first-order team logic and second-order logic. We also characterize the expressive power and the complexity of model-checking and satisfiability of team logic and second-order logic by relating them to second- and third-order arithmetic. Our results set in a larger context the recent results of Lück showing that the extension of TeamLTL by the Boolean negation is highly undecidable under the so-called synchronous semantics. We also study stutter-invariant fragments of extensions of TeamLTL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A temporal logic for asynchronous hyperproperties. CoRR abs/2104.14025 (2021)

    Google Scholar 

  2. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez, C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST 2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54792-8_15

    Chapter  Google Scholar 

  3. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–1210 (2010)

    Article  Google Scholar 

  4. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics. In: LICS 2019, pp. 1–13. IEEE (2019)

    Google Scholar 

  5. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In: Vollmer, H., Vallée, B. (eds.) STACS 2017, LIPIcs, vol. 66, pp. 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  6. Galliani, P.: Inclusion and exclusion dependencies in team semantics: on some logics of imperfect information. Ann. Pure Appl. Log. 163(1), 68–84 (2012)

    Article  Google Scholar 

  7. Galliani, P.: Epistemic operators in dependence logic. Stud. Log. 101(2), 367–397 (2013). https://doi.org/10.1007/s11225-013-9478-3

    Article  Google Scholar 

  8. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science, Springer, Heidelberg (1999)

    Book  Google Scholar 

  9. Kontinen, J., Nurmi, V.: Team logic and second-order logic. Fundam. Inform. 106(2–4), 259–272 (2011)

    Article  Google Scholar 

  10. Krebs, A., Meier, A., Virtema, J.: A team based variant of CTL. In: TIME 2015, pp. 140–149 (2015). https://doi.org/10.1109/TIME.2015.11

  11. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the specification and verification of hyperproperties. In: Potapov, I., Spirakis, P., Worrell, J. (eds.) MFCS 2018, vol. 117, pp. 10:1–10:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018)

    Google Scholar 

  12. Leivant, D.: Higher order logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A., Siekmann, J.H. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 2, pp. 229–322. Oxford University Press, Oxford (1994)

    Google Scholar 

  13. Lück, M.: Axiomatizations of team logics. Ann. Pure Appl. Log. 169(9), 928–969 (2018). https://doi.org/10.1016/j.apal.2018.04.010

    Article  Google Scholar 

  14. Lück, M.: On the complexity of linear temporal logic with team semantics. Theor. Comput. Sci. 837, 1–25 (2020)

    Article  Google Scholar 

  15. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foundations of Computer Science, pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  16. Rabe, M.N.: A temporal logic approach to information-flow control. Ph.D. thesis, Saarland University (2016)

    Google Scholar 

  17. Väänänen, J.: Dependence Logic. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  18. Virtema, J., Hofmann, J., Finkbeiner, B., Kontinen, J., Yang, F.: Linear-time temporal logic with team semantics: Expressivity and complexity. CoRR abs/2010.03311 (2020)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Finnish Academy (grants 308712 and 322795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Sandström .

Editor information

Editors and Affiliations

Appendix

Appendix

Proofs

Proof

(Sketch of the proof of Theorem 1). Let \(T'\subseteq T\) and \(i:T'\rightarrow \mathbb {N}\). We use \(T'\) and i as a means to refer to any team that might be relevant for the evaluation of \(\mathrm {TeamLTL} ^a(\sim )\) formulas when starting the evaluation with T. On the first-order side the corresponding team will be

$$ S^x_{T',i} := \{ s \mid s(x)= (t,i(t)) \text{ and } t \in T' \}. $$

We can now show using simultaneous induction on \(\varphi \) that for all \(T'\subseteq T\), \(i:T'\rightarrow \mathbb {N}\), and \(u\in \{x,y,z\}\)

$$ \{t[i(t),\infty )\mid t\in T'\}\models \varphi \Leftrightarrow \mathcal {M}_T\models _{S^u_{T',i}} ST_u(\varphi ).$$
  • Assume \(\varphi = p_i\) and \(T'\subseteq T\), \(i:T'\rightarrow \mathbb {N}\) are arbitrary. Now

    $$\begin{aligned} \{t[i(t),\infty )\mid t\in T'\}\models \varphi\Leftrightarrow & {} p_i \in t(i(t)) \text{ for } \text{ all } t\in T' \\\Leftrightarrow & {} (t,i(t))\in P^{ \mathcal {M}_T}_i \text{ for } \text{ all } t\in T' \\\Leftrightarrow & {} \mathcal {M}_T\models _{S^x_{T',i}} P_i(x)\\\Leftrightarrow & {} \mathcal {M}_T\models _{S^x_{T',i}} ST_x(\varphi ) \end{aligned}$$

    Note that the second equivalence holds by the definition of the structure \(\mathcal {M}_T\) and the third equivalence by first-order team semantics of atomic formulas.

  • Assume \(\varphi = X\psi \) and \(T'\subseteq T\) and \(i:T'\rightarrow \mathbb {N}\) are arbitrary. Let \(i^+\) be defined by \(i^+(t):=i(t)+1\) for all t. Now

    $$\begin{aligned} \{t[i(t),\infty )\mid t\in T'\}\models \varphi\Leftrightarrow & {} \{t[i^+(t),\infty )\mid t\in T'\}\models \psi \\\Leftrightarrow & {} \mathcal {M}_T\models _{S^y_{T',i^+}} ST_y(\psi )\\\Leftrightarrow & {} \mathcal {M}_T\models _{S^x_{T',i}} \exists y(S(x,y)\wedge ST_y(\psi ))\\\Leftrightarrow & {} \mathcal {M}_T\models _{S^x_{T',i}} ST_x(X\varphi ) \end{aligned}$$

    The second equivalence above holds by the induction assumption for \(ST_y(\psi )\). For the the third equivalence we use the facts that the supplementation function F for y is uniquely determined by the formula and x is not free in \(ST_y(\psi )\). Note that by locality it holds that

    $$ \mathcal {M}_T\models _{S^x_{T',i} [F/y]} ST_y(\psi ) \Leftrightarrow \mathcal {M}_T\models _{S^y_{T',i^+}} ST_y(\psi ), $$

    since \(S^y_{T',i^+}\) is the reduct of \(S^x_{T',i}[F/y]\) to the team with domain \(\{y\}\).

The proof for the connectives is straightforward and for the temporal operator U it is similar to the case of X.

Proof

(Proof of Corollary 1). We show that \(T\models \varphi \) if and only if \(\mathcal {M}_T\models \psi \), where \(\psi \) is the sentence:

$$\forall x ( \exists y (y<x) \vee (\forall y (\lnot y<x )\wedge ST_x(\varphi ))). $$

Note that

$$\begin{aligned} \mathcal {M}_T\models \psi\Leftrightarrow & {} \mathcal {M}_T\models _{\{\emptyset \}[\mathrm {dom}(\mathcal {M}_T)/x]} \exists y (y<x) \vee (\forall y \lnot (y<x) \wedge ST_x(\varphi )). \\\Leftrightarrow & {} \mathcal {M}_T\models _{S^x_{T} } ST_x(\varphi ). \end{aligned}$$

In the second line the team \(\{\emptyset \}[\mathrm {dom}(\mathcal {M}_T)/]x]\) (i.e., \(\mathrm {dom}(\mathcal {M}_T)\)) has to be split into two disjoint parts: the subset of elements having a predecessor and to those not having a predecessor (\(=S^x_{T} \)). The first disjunct is then trivially satisfied (by flatness it behaves classically) hence we arrive at the case which is equivalent to \(T\models \varphi \) by Theorem 1.

Proof

(Proof of Lemma 1). Suppose 2. Now \(T = T \cup \emptyset \), however the empty set is only stutter equivalent to itself. Thus \(T \equiv _{st}^a T'\).

Suppose 1 and suppose that \(T = T_1 \cup T_2\), hence we have asynchronous stuttering functions F of T and G of \(T'\), such that \(T[F] = U = T'[G]\). We consider the subteams induced by the stuttering function, i.e. \(T_i[F|T_i]\). Since \(T[F] = T'[G]\), there exist subteams \(T'_1,T'_2\) such that \(T'_i[G|T'_i] = T_i[F|T_i]\). Thus \(T_i \equiv _{st}^a T'_i\).

It remains to show that the subteams \(T'_1\) and \(T'_2\) constitute the entirety of the team \(T'\). It is clear that \(T'_1\cup T'_2 \subset T'\), so it remains to show the converse. Let \(t' \in T'\). Now, since \(T \equiv _{st}^a T'\), there exists a \(t \in T\) such that \(t[F|\{t\}] = t'[G|\{t'\}]\). By our assumption, the trace t belongs to either \(T_1\) or \(T_2\). Without loss of generality we may assume that \(t \in T_1\), but then \(t'[G|\{t'\}] \in T'_1[G|T'_1]\). Since the team \(T'\) is a set, i.e. it does not contain duplicates, we may conclude that \(t' \in T'\).

Proof

(Proof of Lemma 2). By the definition of the asynchronous stuttering function, for each coordinate of j(t) there exists a constant \(a_t\) such that \(f_t(a_t) \le j(t)\) and \(t(f_t(a_t)) = t(j(t))\). Let i be the configuration defined by \(i(t) = f_t(a_t)\). Now we can use the stuttering function F to construct stuttering functions \(F'\) and \(F''\) for \(T[i,\infty )\) and \(T[j,\infty )\) respectively. First of we define \(F'\) via \(f'_t(n) = f_t(n + a_t)\) for all \(t \in T\), which clearly is a stuttering function of \(T[i,\infty )\). Next we define

$$\begin{aligned} F''(n) = {\left\{ \begin{array}{ll} (j(t))_{t\in T} &{}\text{ if } n = 0\\ F'(n) &{}\text{ otherwise. } \end{array}\right. } \end{aligned}$$

Since \(t(f_t(a_t)) = t(i(t)) = t(j(t))\) for all \(t \in T\), it follows that \(T[i,\infty )[F'] = T[j,\infty )[F'']\). Thus \(T[i,\infty ) \equiv _{st}^a T[j,\infty )\).

For the second claim we use the assumption that \(T \equiv _{st}^a T'\). We let the configuration i be as above. Now for all n, \(t \in T\) and \(t' \in T'\) it holds that \(t(f_t(n)) = t'(g_{t'}(n))\). Thus there exists some configuration \(k:T' \rightarrow \mathbb N\) such that \(t'(g_{t'}(k(t'))) = t(f_t(i(t)))\), which allows us to define the stuttering function \(G'\) of \(T'[k,\infty )\) as \(g'_{t'}(n) = g_{t'}(n + k(t'))\) for all \(t' \in T'\). Clearly now \(T'[k,\infty )[G'] = T[i,\infty )[F']\), and hence \(T[i,\infty ) \equiv _{st}^a T'[k,\infty )\).

Proof

(Proof of Theorem 4). We define a inductive translation \(\mathrm {Tr}\) from second-order logic to third order arithmetic as follows. The key ideas in the translation are:

  • an element of the domain \(T\times \mathbb {N}\) of the structure \(\mathcal {M}_T\) can be uniquely identified by specifying a trace t and \(i\in \mathbb {N}\). Hence, syntactically, a first-order variable x can be encoded by a pair of variables \((R_x, z_x)\) where \(R_x\) is a binary relation and \(z_x\) is a first-order variable;

  • a subset of \(T\times \mathbb {N}\) is a set of pairs (ti) and hence in the translation a unary relation X is encoded by a third-order variable \(\mathfrak {b}_X\) of type ((2), (1)), where the unary relation encodes i by the singleton \(\{ i\}\).

Define now a formula translation \(\mathrm {Tr}\) as follows. We omit below the obvious cases of the Boolean connectives and, for clarity, we consider only unary relations X on the side of SO. It is straightforward to write the corresponding translations also for relations of arbitrary arities.

$$\begin{aligned} \begin{aligned}&\mathrm {Tr}(x = y) := \forall u \forall v (R_x(u,v) \leftrightarrow \\&\quad R_y(u,v))\wedge z_x = z_y\\&\mathrm {Tr}(x \le y) := \forall u \forall v (R_x(u,v) \leftrightarrow \\&\quad R_y(u,v))\wedge z_x \le z_y\\&\mathrm {Tr}(P_i(x)) := \mathfrak {a}(R_x) \wedge R_x(z_x,i)\\ \end{aligned} \quad \begin{aligned}&\mathrm {Tr}(X(x)) := \exists Y(\mathfrak {b}_X (R_{x},Y)\wedge Y=\{z_x\}) \\&\mathrm {Tr}(\exists x\varphi ) := \exists R_x \exists z_x( \mathfrak {a}(R_x) \wedge \mathrm {Tr}(\varphi ))\\&\mathrm {Tr}(\exists X\varphi ) := \exists \mathfrak {b}_X(\forall R\forall Y( \mathfrak {b}_X(R,Y)\rightarrow \mathfrak {a}(R)\wedge \\&\quad |Y|=1)\wedge \mathrm {Tr}(\varphi )) \end{aligned} \end{aligned}$$

In the above formulas, i denotes a (definable) constant. It is now straightforward to show using induction on \(\varphi \) that for all s and \(s^*\):

$$\begin{aligned} \mathcal {M}_T \models _s \varphi \iff (\mathbb {N},+,\times ,\le 0,1)\models _{s^*} \mathrm {Tr}(\varphi )(\mathcal {A}_T /\mathfrak {a}), \end{aligned}$$

where the interpretations s and \(s^*\) relate to each other as described above.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kontinen, J., Sandström, M. (2021). On the Expressive Power of TeamLTL and First-Order Team Logic over Hyperproperties. In: Silva, A., Wassermann, R., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2021. Lecture Notes in Computer Science(), vol 13038. Springer, Cham. https://doi.org/10.1007/978-3-030-88853-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-88853-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-88852-7

  • Online ISBN: 978-3-030-88853-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics