Skip to main content
Log in

A terminological history of early elementary particle physics

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

By 1933, the class of generally accepted elementary particles comprised the electron, the photon, the proton as well as newcomers in the shape of the neutron, the positron, and the neutrino. During the following decade, a new and poorly understood particle, the mesotron or meson, was added to the list. By paying close attention to the names of these and other particles and to the sometimes controversial proposals of names, a novel perspective on this well-researched line of development is offered. Part of the study investigates the circumstances around the coining of “positron” as an alternative to “positive electron.” Another and central part is concerned with the many names associated with the discovery of what in the late 1930s was generally called the “mesotron” but eventually became known as the “meson” and later again the muon and pion. The naming of particles in the period up to the early 1950s was more than just a matter of agreeing on convenient terms, it also reflected different conceptions of the particles and in some cases the uncertainty regarding their nature and relations to existing theories. Was the particle discovered in the cosmic rays the same as the one responsible for the nuclear forces? While two different names might just be synonymous referents, they might also refer to widely different conceptual images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Source: Rosenfeld Papers, Niels Bohr Archive

Fig. 6

Source: Cronin 2011, p. 198

Similar content being viewed by others

Notes

  1. The two names, honoring Satyendra N. Bose and Enrico Fermi, respectively, were coined by Paul Dirac in 1945. See Walker and Slack 1980, and Kragh (1990a, p. 36). The name “yukon” referring to Hideki Yukawa was occasionally used for the meson, but mostly informally and only for a brief period of time (Sect. 6.4).

  2. Remarkably, in his famous book Les Atomes published in 1913, Jean Perrin, the later Nobel laureate, avoided the term electron and instead wrote of either corpuscles or, more frequently, “atoms of electricity”.

  3. As Klaus Hentschel (2018, p. 33) points out, “it is plain wrong to identify G. N. Lewis as the one to have designated the term ‘photon’ to Einstein’s notion of the light quantum, as alleged in about 99% of all texts treating the subject”.

  4. The British chemist and physician William Prout suggested in 1815 what is known as Prout’s hypothesis, namely that for any element x the atomic weight could be stated as a multiple of hydrogen’s weight, that is, \({A}_{\mathrm{x}}=n{A}_{\mathrm{H}}\) with n = 1, 2, 3, … (Brock 1985).

  5. In the original German: “Neutron, es schwankt heran / Masse, sie lastet dran / Ladung, sie is vertan / Pauli, er glaubt daran!“

  6. Science 62 (1925): 461–462 promoted the name “Millikan rays.” Although Millikan did not use it himself, neither did he protest. For details on the controversy, see De Maria, Ianniello, and Russo 1991. The first time that “cosmic rays” appeared in the title of a scientific communication may have been in Wright (1926) published 9 January 1926.

  7. According to Roqué (1997), the positron was manufactured rather than discovered. See this paper for further references to the historical literature. See also Leone and Robotti (2012).

  8. American Institute of Physics (AIP) oral history interview conducted by Charles Weiner on 30 June 1966: https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4487

  9. AIP interview, C. Weiner with W. Furry, 9 August 1971. See also Monk (2012, p. 208): “It would not be until the summer of the following year [1934] that Oppenheimer resigned to the word ‘positron’, which he regarded as a barbaric mixture of Latin (posi-) and Greek (-tron)”.

  10. See also a letter by M. L. Glaser to the editor, American Journal of Physics 82, January 2014: 6, which quotes from Reuterdahl’s 1923 publication.

  11. The “graviton” also turned up in an obscure non-Einsteinian theory of gravitation proposed in 1935 by Shah Sulaiman, an Indian mathematician and chief justice. His gravitons were tiny neutral particles not unlike those postulated by Georges-Louis Le Sage in the 1780s (SNL 1935; Hamilton 1935).

  12. The “magnon” of solid-state physics, so named by Landau around 1940, is an entirely different concept. See Walker and Slack (1970). The “magneton” introduced by Pierre Weiss in 1911 was a unit of magnetic moment, although initially also discussed as a kind of magnetic elementary particle. The British physicist Samuel McLaren suggested that the magneton was the magnetic analogue to the electron (Hendry 1983).

  13. See Galison (1983) and Galison (1987, pp. 117–133), who argues that there is no unique chronological answer to the question of when the muon was discovered.

  14. The two unpublished letters are reproduced in Kawabe (1988).

  15. Bohr to Klein, 13 January 1938, Bohr Scientific Correspondence (BSC), Niels Bohr Archive (NBA), Copenhagen.

  16. Anderson and Anderson (1983, p. 118); Weiss (1999, p. 74). See also Charles Weiner’s interview with Anderson of 30 June 1966, https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4487: “I think the word ‘mesoton’ might have stuck. Nobody liked mesotron. It’s as bad as positron, I guess.”.

  17. Brown and Rechenberg (1996, p. 206). Klein’s lecture “On the Field Theory of Charged Particles” is reprinted in Ekspong (1991, pp. 85–102).

  18. Ehrenfest and Fréon (1938); Brown and Rechenberg (1996, p. 185). The Nobel laureate Jean Perrin (1870–1942) was the father of Francis Perrin (1901–1992); Paul Ehrenfest Jr. (1915–1939) was the son of the famous Austrian-Dutch physicist Paul Ehrenfest (1880–1933).

  19. Bohr to Millikan, unknown date but probably November, quoted in Millikan (1947, pp. 509–510). The Copenhagen “small conference” on cosmic rays took part 25–29 October. The full letter is reproduced in Weiss (1999, p. 75).

  20. Kemmer (1965, p. 605). Egon Bretscher was a Swiss-British chemist who in the late 1930s switched to nuclear physics and later specialized in applied atomic energy.

  21. Munns (2017) details the modern scientific use of the suffix -tron not only in physics but also in plant biology and other pure and applied sciences. As the author points out, there is no connection between the instruments ending with this suffix and the particles which happen to share the suffix.

  22. In Spanish “meson” may refer to an inn or boarding house, an appellation common also in Mexico and the South-West of the United States. Brode and Swann were both sympathetic to Millikan’s proposal and among the last physicists to use “mesotron” in their papers. See Brode (1949) and Seymour and Swann (1954).

  23. Gamow (1988, p. 315). See also Roy and Singh (2015) for the naming controversy as a conflict between American and European scientists.

  24. https://en.wikipedia.org/wiki/Meson. Spradley (1985, p. 567); Capri (2007, p. 12).

  25. https://www-yukawa.phys.sci.osaka-u.ac.jp/en/archive/age/age1939

  26. “Dynatron” was at the time well known as the name for a vacuum tube oscillator circuit used in radio technology and scientific instruments. It was invented by the physicist Albert Hull at General Electric in 1918.

  27. Monaldi (2008, p. 366) accepts Millikan’s note as proof that Bohr proposed the yukon at the meeting of the British Association.

  28. Bohr’s article with the same title for the 1939 yearbook, and with manuscript dated 19 January 1939, did not refer to the two words. On the other hand, it mentioned “a new kind of particle, the so-called ‘meson’.” It also referred to the very recent discovery of uranium fission, if not with the word “fission” which had not yet appeared in print. It only did so in a paper by Lise Meitner and Robert Frisch published in Nature on 11 February.

  29. Bohr to Millikan, 9 April 1941, BSC. In an unsent draft version of the letter, Bohr wrote that the criticism of the philological authorities “rests entirely on the last syllable, which is felt as unduly stressing the relationship to the word electron.” Bohr’s interest in the terminology of new elementary particles seems to have been unrelated to his more general and philosophical ideas about ordinary language as a precondition for unambiguous communication (Favrholdt 1993).

  30. Pauli and Dancoff (1942, p. 85). And in an earlier letter to Bhabha: “I consider in the symmetrical pseudoscalar-theory (spin 0-meson) the proton or neutron (let us say ‘nucleon’) to be at rest.” Pauli to Bhabha, 13 April 1942, in Pauli (1993, p. 136).

  31. Interview with Christian Møller, Copenhagen, 26 August 1971. https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4783-2

  32. “The Cracow cosmic ray conference,” Science 107 (1948): 60–61. The Cracow conference was not truly international as more than two-thirds of the participants were Polish scientists. With the single exception of John Wheeler, who prepared the report, they were all European. They included specialists in cosmic ray research such as P. Auger, L. Leprince-Ringuet, P. Blackett, W. Heitler, C. Powell, N. Arley, L. Janossy, and G. Bernadini.

References

  • AAAS. 1931. General reports of the first Pasadena meeting of the American Association for the Advancement of Science. Science 74: 103–123.

    Article  Google Scholar 

  • Aaserud, Finn. 1990. Redirecting science: Niels Bohr, philanthropy and the rise of nuclear physics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Alichanian, Artem, Abraham Alichanow, and A. Weissenberg. 1947. On the existence of particles with a mass intermediate between those of mesotron and proton. Journal of Physics (USSR) 11: 97–99.

    Google Scholar 

  • Alichanian, A.I., and A.I. Alichanow. 1949. Concerning new elementary particles in cosmic rays. Nature 163: 761.

    Article  Google Scholar 

  • Anderson, Carl D. 1933. The positive electron. Physical Review 43: 491–494.

    Article  Google Scholar 

  • Anderson, Carl D. 1949. The elementary particles of matter. Engineering and Science Monthly 12 (7): 3–7.

    Google Scholar 

  • Anderson, Carl D. 1961. Early work on the positron and the muon. American Journal of Physics 29: 825–830.

    Article  Google Scholar 

  • Anderson, Carl D., and Herbert L. Anderson. 1983. Unraveling the particle content of cosmic rays. In The birth of particle physics, ed. Laurie M. Brown and Lillian Hoddeson, 131–154. Cambridge: Cambridge University Press.

    Google Scholar 

  • Anderson, Carl D., and Seth H. Neddermeyer. 1938. Mesotron (intermediate particle) as name for the new particle of intermediate mass. Nature 142: 878.

    Article  Google Scholar 

  • Anderson, Carl D., et al. 1934. The mechanism of cosmic-ray counter action. Physical Review 45: 352–363.

    Article  Google Scholar 

  • Arabatzis, Theodore. 2006. Representing electrons: A biographical approach to theoretical entities. Chicago: University of Chicago Press.

    Google Scholar 

  • Arley, Niels. 1945. Cosmic radiation and negative protons. Det Kongelige Danske Videnskabernes Selskab Matematisk-Fysiske Meddelelser 23 (7): 42.

    MathSciNet  Google Scholar 

  • Arley, Niels, and Walther Heitler. 1938. Neutral particles in cosmic radiation. Nature 142: 158–159.

    Article  Google Scholar 

  • Auger, Pierre, et al. 1939. Extensive cosmic-ray showers. Reviews of Modern Physics 11: 288–291.

    Article  Google Scholar 

  • Authier, André. 2013. Early days of X-ray crystallography. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Belinfante, Frederik J. 1939a. Theory of heavy quanta. Gravenhage: M. Nijhoff.

    Book  MATH  Google Scholar 

  • Belinfante, Frederik J. 1939b. A new form of the baryteron equation and some related questions. Nature 143: 201.

    Article  MATH  Google Scholar 

  • Belinfante, Frederik J. 1949. Positon theory. Physical Review 75: 1633.

    MathSciNet  Google Scholar 

  • Belinfante, Frederik J. 1953. Pions from production of baryons by protons. Physical Review 92: 145–152.

    Article  MATH  Google Scholar 

  • Bethe, Hans. 1938. The barytron theory of nuclear forces. Physical Review 53: 938.

    Google Scholar 

  • Bethe, Hans. 1940. The meson theory of nuclear forces, Part I. Physical Review 57: 260–272.

    Article  MATH  Google Scholar 

  • Bethe, Hans, and Rudolf Peierls. 1934. The “neutrino.” Nature 133: 532.

    Article  MATH  Google Scholar 

  • Bhabha, Homi J. 1939. The fundamental length introduced by the theory of the mesotron (meson). Nature 143: 276–277.

    Article  MATH  Google Scholar 

  • Blackett, Patrick M. S. 1938. On the instability of the barytron and the temperature effect of cosmic rays. Physical Review 54: 973–974.

    Article  Google Scholar 

  • Bohr, Niels. 1986. In Niels Bohr: Collected works, vol. 9, ed. Rudolf Peierls. Amsterdam: North-Holland.

    Google Scholar 

  • Bohr, Niels. 2007. In Niels Bohr: Collected works, vol. 12, ed. Finn Aaserud. Amsterdam: Elsevier.

    Google Scholar 

  • Borrelli, Arianna. 2015. The story of the Higgs boson: The origin of mass in early particle physics. European Physical Journal H 40: 1–52.

    Article  Google Scholar 

  • Brock, William. 1985. From protyle to proton: William Prout and the nature of matter 1785–1985. Bristol: Adam Hilger.

    Google Scholar 

  • Brode, Robert B. 1949. The mass of the mesotron. Reviews of Modern Physics 21: 37–41.

    Article  Google Scholar 

  • Brown, Laurie M. 1978. The idea of the neutrino. Physics Today 31 (9): 23–28.

    Article  Google Scholar 

  • Brown, Andrew. 1997. The neutron and the bomb: A biography of Sir James Chadwick. Oxford: Oxford University Press.

    Google Scholar 

  • Brown, Laurie M., and Helmut Rechenberg. 1996. The origin of the concept of nuclear forces. Bristol: Institute of Physics Publishing.

    Google Scholar 

  • Brown, Laurie M., Max Dresden, and Lillian Hoddeson, eds. 1989. Pions to quarks: Particle physics in the 1950s. Cambridge: Cambridge University Press.

    Google Scholar 

  • Brush, Stephen G. 1961. Origin of the word “neutron.” Nature 190: 251–252.

    Article  Google Scholar 

  • Brush, Stephen G. 1993. Prediction and theory evaluation: Subatomic particles. Rivista Di Storia Della Scienza 1: 47–152.

    MathSciNet  Google Scholar 

  • Capri, Anton Z. 2007. From quanta to quarks: More anecdotal history of physics. Singapore: World Scientific.

    Book  MATH  Google Scholar 

  • Carlson, J. Franklin., and J. Robert Oppenheimer. 1932. The impacts of fast electrons and magnetic neutrons. Physical Review 41: 763–792.

    Article  MATH  Google Scholar 

  • Caso, Arthur L. 1980. The production of new scientific terms. American Speech 55: 101–111.

    Article  Google Scholar 

  • Chadwick, James, Patrick M. S. Blackett, and Guiseppe P. S.. Occhialini. 1934. Some experiments on the production of positive electrons. Proceedings of the Royal Society A 144: 235–249.

    Google Scholar 

  • Childs, P.E. 1998. From hydrogen to meitnerium: Naming the chemical elements. In Chemical nomenclature, ed. K.J. Thurlow, 27–66. Dordrecht: Kluwer Academic.

    Chapter  Google Scholar 

  • Clay, Jacob, and A. von Gemert. 1939. Decrease of the intensity of cosmic rays in the earth down to 1380 m waterequivalent. Physica 6: 497–510.

    Article  Google Scholar 

  • Compton, Arthur A. 1921. The elementary particle of positive electricity. Nature 106: 828.

    Article  Google Scholar 

  • Compton, Arthur A. 1928. Discordances entre l’expérience et la théorie électromagnétique du rayonnement. In Électrons et Photons, ed. Institut International de Physique Solvay, pp. 55–85. Paris: Gauthier-Villars.

  • Compton, Arthur A. 1939a. Foreword to symposium on cosmic rays. Reviews of Modern Physics 11: 122.

    Google Scholar 

  • Compton, Arthur A. 1939b. Chicago cosmic ray symposium. Scientific Monthly 49: 280–284.

    Google Scholar 

  • Compton, Arthur A. 1965. X-rays as a branch of physics. In Physics 1922–1941, ed. Nobel Lectures, 174–190. Amsterdam: Elsevier.

    Google Scholar 

  • Condon, Edward U. 1926. Remarks on penetrating radiation. Proceedings of the Academy of Sciences 12: 323–326.

    Article  Google Scholar 

  • Cronin, James W. 2011. The 1953 cosmic ray conference at Bagneres de Bigorre: The birth of sub atomic physics. European Physical Journal H 36: 183–201.

    Article  Google Scholar 

  • Dahl, Per F. 1997. Flash of the Cathode Rays: A History of J. J. Thomson’s Electron. Bristol: Institute of Physics Publishing.

    Book  Google Scholar 

  • Darwin, Charles G. 1939. Use of the termination -tron in physics. Nature 143: 602.

    Article  Google Scholar 

  • Daudin, Jean. 1950. Les varytrons. Journal De Physique Et Le Radium 11: 25–29.

    Article  Google Scholar 

  • Daudin, Jean. 1953. Les varytrons et les nouvelles de masse. Journal De Physique Et Le Radium 14: 419–423.

    Article  Google Scholar 

  • Davis, Watson. 1933. Free positive electrons. Science 77 (Supplement): 5.

    Google Scholar 

  • Davis, Watson. 1936. Discovery of the positron. Science 84 (Supplement): 8–9.

    Article  Google Scholar 

  • De Maria, Michelangelo., and Arturo Russo. 1985. The discovery of the positron. Rivista Di Storia Della Scienza 2: 237–286.

    Google Scholar 

  • De Maria, Michelangelo., M.G. Ianniello, and Arturo Russo. 1991. The discovery of cosmic rays: Rivalries and controversies between Europe and the United States. Historical Studies in the Physical and Biological Sciences 22: 165–192.

    Article  Google Scholar 

  • Diament, Henri. 1991. Politics and nationalism in the naming of chemical elements. Names a: Journal of Onomastics 39: 203–216.

    Article  Google Scholar 

  • Dingle, Herbert. 1934. Designation of the positive electron. Nature 133: 330.

    Article  Google Scholar 

  • Dirac, Paul A. M. 1931. Quantised singularities in the electromagnetic field. Proceedings of the Royal Society A 133: 60–72.

    MATH  Google Scholar 

  • Ehrenfest, Paul Jr, and André Fréon. 1938. Dèsintégration spontanée des mésotons, particules composant le rayonnement cosmique penetrant. Comptes Rendus 207: 853–855.

    MATH  Google Scholar 

  • Ekspong, Gösta., ed. 1991. The Oskar Klein memorial lectures, vol. 1. Singapore: World Scientific.

    MATH  Google Scholar 

  • Enz, Charles P. 2002. No time to be brief: A scientific biography of Wolfgang Pauli. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Falconer, Isobel. 2001. Corpuscles to electrons. In Histories of the electron: The birth of microphysics, ed. Jed Z. Buchwald and Andrew Warwick, 77–100. Cambridge: MIT Press.

    Google Scholar 

  • Favrholdt, David. 1993. Niels Bohr’s views concerning language. Semiotica 94: 5–34.

    Article  Google Scholar 

  • Feather, Norman. 1940. Lord rutherford. London: Blackwell & Son.

    Google Scholar 

  • Fermi, Enrico. 1950. High energy nuclear events. Progress of Theoretical Physics 5: 570–583.

    Article  MathSciNet  Google Scholar 

  • Fermi, Enrico. 1951. Elementary particles. New Haven: Yale University Press.

    MATH  Google Scholar 

  • Fontani, Marco, Mariagrazia Costa, and Mary V. Orna. 2015. The lost elements: The periodic table’s shadow side. Oxford: Oxford University Press.

    Google Scholar 

  • Fröhlich, Herbert, Walter Heitler, and Nicholas Kemmer. 1938. On the nuclear forces and the magnetic moments of the neutron and the proton. Proceedings of the Royal Society A 166: 154–171.

    MATH  Google Scholar 

  • Furry, Wendell, and J. Robert Oppenheimer. 1934. On the theory of the electron and the positive. Physical Review 45: 245–262.

    Article  MATH  Google Scholar 

  • Futscher, Klaus. 1949. Elementarteilchen. Physikalische Blätter 5: 258–267.

    Article  Google Scholar 

  • Galison, Peter. 1983. The discovery of the muon and the failed revolution against quantum electrodynamics. Centaurus 26: 262–316.

    Article  MathSciNet  Google Scholar 

  • Galison, Peter. 1987. How experiments end. Chicago: University of Chicago Press.

    Google Scholar 

  • Gamow, George. 1948. The reality of neutrinos. Physics Today 1 (3): 4–7.

    Article  Google Scholar 

  • Gamow, George. 1966. Thirty years that shook physics: The story of quantum theory. New York: Doubleday & Co.

    Google Scholar 

  • Gamow, George. 1988. The great physicists from Galileo to Einstein. New York: Dover Publications.

    Google Scholar 

  • Glasson, Joseph L. 1921. Attempts to detect the presence of neutrons in a discharge tube. Philosophical Magazine 42: 596–600.

    Google Scholar 

  • Gorelik, Gennady, and Victor Ya Frenkel. 1994. Matvei Petrovich Bronstein and Soviet theoretical physics in the thirties. Basel: Birkhäuser Verlag.

    Book  MATH  Google Scholar 

  • Greisen, Kenneth. 1947. Review of Millikan 1947. Science 105: 626.

    Article  Google Scholar 

  • Guerra, Francesco, Matteo Leone, and Nadia Robotti. 2014. When energy conservation fail: The prediction of the neutrino. Science and Education 23: 1339–1359.

    Article  Google Scholar 

  • Hamilton, D.R. 1935. Remarks on Sulaiman’s theory of relativity. Science 81: 271–271.

    Article  Google Scholar 

  • Harkins, William D. 1920. The nuclei of atoms and the new periodic system. Physical Review 15: 73–94.

    Article  Google Scholar 

  • Harkins, William D. 1921. The constitution and stability of atom nuclei. Philosophical Magazine 42: 305–339.

    Google Scholar 

  • Harkins, William D. 1933a. The neutron and neuton, the new element of atomic number zero. Nature 131: 23.

    Article  MATH  Google Scholar 

  • Harkins, William D. 1933b. The new kind of matter: Element zero or neuton. Scientific Monthly 36: 546–549.

    Google Scholar 

  • Harrington, Jean. 1938. And now the X-particle. Scientific American 159 (July): 20–22.

    Article  Google Scholar 

  • Hayakawa, Satio. 1950. Note on varitrons. Progress of Theoretical Physics 5: 145–147.

    Article  Google Scholar 

  • Hayakawa, Satio. 1983. The development of meson physics in Japan. In The birth of particle physics, ed. Laurie M. Brown and Lillian Hoddeson, 82–107. Cambridge: Cambridge University Press.

    Google Scholar 

  • Heilbron, John L., and Robert W. Seidel. 1989. Lawrence and his laboratory: A history of the Lawrence Berkeley Laboratory. Berkeley: University of California Press.

    Book  Google Scholar 

  • Heisenberg, Werner, ed. 1943. Vorträge über Kosmische Strahlung. Berlin: Springer.

    Google Scholar 

  • Heisenberg, Werner. 1984. In Gesammelte Werke, series B, ed. W. Blum, H.-P. Dürr, and H. Rechenberg. Berlin: Springer.

    Google Scholar 

  • Hendry, John. 1983. Monopoles before dirac. Studies in the History and Philosophy of Science 14: 81–87.

    Article  MathSciNet  Google Scholar 

  • Hentschel, Klaus. 2018. Photons: The history and mental models of light quanta. Cham: Springer.

    Book  MATH  Google Scholar 

  • Horgan, John. 1995. The return of the maverick. Scientific American 272 (3): 46–48.

    Article  Google Scholar 

  • Jauncey, George E. 1937. Possible origin of the X-particle. Physical Review 52: 1256.

    Article  Google Scholar 

  • Jessup, Alfred C., and Augustus E. Jessup. 1908. The evolution and devolution of the elements. Philosophical Magazine 15: 21–55.

    Google Scholar 

  • Johnson, Thomas H. 1935. Evidence for a positron-negatron component of primary cosmic radiation. Physical Review 47: 318–319.

    Article  Google Scholar 

  • Johnson, George. 1999. Strange beauty: Murray Gell–Mann and the revolution in twentieth-century physics. New York: Alfred A. Knopf.

    MATH  Google Scholar 

  • Johnson, Sean F. 2012. The neutron’s children: Nuclear engineers and the shaping of identity. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Johnson, Thomas H., and Martin A. Pomerantz. 1939. The difference in the absorption of cosmic rays in air and water and the instability of the barytron. Physical Review 55: 104–105.

    Article  MATH  Google Scholar 

  • Jordan, Pascual. 1939. Anmerkung zur Theorie der Elementarteilchen. Zeitschrift Für Physik 111: 498–500.

    Article  MATH  Google Scholar 

  • Kawabe, Rokuo. 1988. Two unpublished manuscripts of Yukawa on the meson theory. In Proceedings of the Japan-USA Collaborative Workshops on the History of Particle Theory in Japan, eds. Laurie M. Brown and Ziro Maki, pp. 175–194. Kyoto: Yukawa Hall Archival Library.

  • Kemmer, Nicholas. 1965. The impact of Yukawa’s theory on workers in Europe: A reminiscence. Progress of Theoretical Physics, Supplement E65: 602–608.

    Article  Google Scholar 

  • Klein, Oskar. 1948. Mesons and nucleons. Nature 161: 897–899.

    Article  Google Scholar 

  • Klein, Oskar. 1955. Quantum theory and relativity. In Niels Bohr and the development of physics, ed. Wolfgang Pauli, 96–117. London: Pergamon Press.

    Google Scholar 

  • Kojevnikov, Alexei B. 1999. Freedom, collectivism, and quasiparticles: Social metaphors in quantum physics. Historical Studies in the Physical and Biological Sciences 29: 295–331.

    Article  Google Scholar 

  • Kragh, Helge. 1989a. Concept and controversy: Jean Becquerel and the positive electron. Centaurus 32: 203–240.

    Article  MathSciNet  Google Scholar 

  • Kragh, Helge. 1989b. The negative proton: Its earliest history. American Journal of Physics 57: 1034–1039.

    Article  Google Scholar 

  • Kragh, Helge. 1990a. Dirac: A scientific biography. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kragh, Helge. 1990b. From “electrum” to positronium. Journal of Chemical Education 67: 196–197.

    Article  Google Scholar 

  • Kragh, Helge. 2001. The electron, the protyle, and the unity of matter. In Histories of the electron: The birth of microphysics, ed. Jed Z. Buchwald and Andrew Warwick, 195–226. Cambridge: MIT Press.

    Google Scholar 

  • Kragh, Helge. 2012. Niels Bohr and the quantum atom: The Bohr model of atomic structure 1913–1925. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Kragh, Helge. 2014a. The names of physics: Plasma, fission, photon. European Physical Journal H 39: 262–282.

    Article  Google Scholar 

  • Kragh, Helge. 2014b. Naming the big bang. Historical Studies in the Natural Sciences 44: 3–36.

    Article  Google Scholar 

  • Kragh, Helge, and James M. Overduin. 2014. The weight of the vacuum: A scientific history of dark energy. Heidelberg: Springer.

    Book  Google Scholar 

  • Lattes, Cesare M. G., Giuseppe P. S. Occhialini, and Cecil F. Powell. 1947. Observations on the tracks of slow mesons in photographic emulsions. Nature 160: 453–456.

    Article  Google Scholar 

  • Lawrence, Ernest O. 1948. High energy physics. American Scientist 36: 40–49.

    Google Scholar 

  • Lawrence, Ernest O., Edwin McMillan, and Robert L. Thornton. 1935. The transmutation functions for some cases of deuteron-induced radioactivity. Physical Review 48: 493–499.

    Article  Google Scholar 

  • Leone, Matteo, and Nadia Robotti. 2012. An uninvited guest: The positron in early 1930s physics. American Journal of Physics 80: 534–541.

    Article  Google Scholar 

  • Leprince-Ringuet, Louis. 1943. Progrès dans l’étude du rayonnement cosmique: Le mésoton. L’astronomie 57: 145–151.

    Google Scholar 

  • Leprince-Ringuet, Louis. 1982. Les rayons cosmiques et la physique des particules à l’Ecole Polytechnique. Journal De Physique 43 (supplement): C165–C168.

    Google Scholar 

  • Leprince-Ringuet, Louis, et al. 1941. Mésure directe de la masse d’un mésoton. Journal De Physique 2: 63–71.

    Article  MATH  Google Scholar 

  • Lewis, Gilbert N. 1926. Light waves and light corpuscles. Nature 117: 236–238.

    Article  MATH  Google Scholar 

  • Lodge, Oliver. 1920. Name for the positive nucleus. Nature 106: 467.

    Article  Google Scholar 

  • Lodge, Oliver. 1922. Speculations concerning the positive electron. Nature 110: 696–697.

    Article  Google Scholar 

  • Masson, Orme. 1921. The constitution of atoms. Philosophical Magazine 41: 281–285.

    Google Scholar 

  • Mehra, Jagdish, ed. 1975. The Solvay conferences of physics: Aspects of the development of physics since 1911. Dordrecht: Reidel.

    Google Scholar 

  • Millikan, Robert A. 1924. Atomism in modern physics. Journal of the Chemical Society, Transactions 125: 1405–1417.

    Article  Google Scholar 

  • Millikan, Robert A. 1935. Electrons (+ and −), protons, photons, neutrons, and cosmic rays. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Millikan, Robert A. 1939. Mesotron as the name of the new particle. Physical Review 55: 105.

    Article  Google Scholar 

  • Millikan, Robert A. 1947. Electrons (+ and −), protons, photons, neutrons, mesotron and cosmic rays. Chicago: University of Chicago Press.

    MATH  Google Scholar 

  • Møller, Christian. 1940. On the theory of mesons. Physical Review 58: 1118.

    Article  Google Scholar 

  • Møller, Christian. 1941. Nomenclature of nuclear particles. Physical Review 59: 323.

    Article  Google Scholar 

  • Møller, Christian. 1947. The possible existence of mass spectra of fundamental particles. In Report of an International Conference on Fundamental Particles and Low Temperatures, vol. 1, p. 184. London: The Physical Society.

  • Møller, Christian, and Léon. Rosenfeld. 1939. Theory of mesons and nuclear forces. Nature 143: 241–242.

    Article  MATH  Google Scholar 

  • Moir, James. 1921. The atomic theory in 1921. South African Journal of Science 17: 47–62.

    Google Scholar 

  • Monaldi, Daniela. 2005. Life of μ: The observation of the spontaneous decay of mesotrons and its consequences, 1938–1947. Annals of Science 62: 419–455.

    Article  Google Scholar 

  • Monaldi, Daniela. 2008. The indirect observation of the decay of mesotrons: Italian experiments on cosmic radiation, 1937–1943. Historical Studies in the Natural Sciences 38: 353–404.

    Article  Google Scholar 

  • Monk, Ray. 2012. Robert Oppenheimer: A life inside the center. New York: Doubleday.

    Google Scholar 

  • Mukherji, Visvapriya. 1974. A history of the meson theory of nuclear forces from 1935 to 1952. Archive for History of Exact Sciences 13: 27–102.

    Article  MathSciNet  Google Scholar 

  • Munns, David P. D. 2017. From the algatron to the zootron: The history of the twentieth century is the story of trons. Annalen Der Physik 529 (6): 1700135.

    Article  Google Scholar 

  • Nature,. 1920. Physics at the British Association. Nature 106: 357–358.

    Article  Google Scholar 

  • Nedelsky, Leo, and J. Robert Oppenheimer. 1933. The production of positives by nuclear gamma-rays. Physical Review 44: 948–949.

    Article  Google Scholar 

  • Nernst, Walther. 1907. Theoretische Chemie, 5th ed. Stuttgart: Ferdinand Enke.

    MATH  Google Scholar 

  • Nordheim, Lothar W., and Gertrud Nordheim. 1938. On the production of heavy electrons. Physical Review 54: 254–265.

    Article  Google Scholar 

  • O’Hara, J.G.O. 1975. George Johnstone Stoney, F.R.S., and the concept of the electron. Notes and Records of the Royal Society of London 29: 265–276.

    Article  Google Scholar 

  • Okun, Lev. 1962. The theory of weak interaction. High-Energy Physics. Proceedings, 11th International Conference, ICHEP’62, Geneva, 845–866.

  • Osgood, Thomas H. 1941. Physics in 1940. Journal of Applied Physics 12: 84–99.

    Article  Google Scholar 

  • Pais, Abraham. 1953. On the baryon–meson–photon system. Progress of Theoretical Physics 10: 457–469.

    Article  MATH  Google Scholar 

  • Pais, Abraham. 1986. Inward bound: Of matter and forces in the physical world. Oxford: Clarendon Press.

    Google Scholar 

  • Pais, Abraham. 1989. From the 1940s into the 1950s. In Pions to quarks, ed. Laurie M. Brown, Max Dresden, and Lillian Hoddeson, 348–355. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Pauli, Wolfgang. 1985. In Wissenschaftlicher Briefwechsel, vol. 2, ed. Karl von Meyenn. Berlin: Springer.

    Google Scholar 

  • Pauli, Wolfgang. 1993. In Wissenschaftlicher Briefwechsel, vol. 3, ed. Karl von Meyenn. Berlin: Springer.

    Google Scholar 

  • Pauli, Wolfgang. 1994. In Writings on physics and philosophy, ed. Charles P. Enz and Karl von Meyenn. Berlin: Springer.

    Chapter  MATH  Google Scholar 

  • Pauli, Wolfgang, and Frederik J. Belinfante. 1940. On the statistical behaviour of known and unknown elementary particles. Physica 7: 177–192.

    Article  MathSciNet  MATH  Google Scholar 

  • Pauli, Wolfgang, and Sidney M. Dancoff. 1942. The pseudoscalar meson field with strong coupling. Physical Review 62: 85–108.

    Article  MathSciNet  MATH  Google Scholar 

  • Peierls, Rudolf. 1939. The meson. Reports on Progress in Physics 6: 78–94.

    Article  Google Scholar 

  • Perrin, Francis. 1933. Possibilité d’émission de particules neutres de masse intriséque nulle dans les radioactivités β. Comptes Rendus 197: 1625–1627.

    MATH  Google Scholar 

  • Pfeiffer, Hans H. 1942. Über die Abhängigkeit der Doppelbrechung von der Orientierung protoplasmatischer Leptonen durch Zentrifugierung. Kolloid-Zeitschrift 100: 254–263.

    Article  Google Scholar 

  • Poole, Howard. 1923. Speculation concerning the positive electron. Nature 111: 15–16.

    Article  Google Scholar 

  • Powell, Cecil F. 1950. Mesons. Reports on Progress in Physics 13: 350–424.

    Article  MATH  Google Scholar 

  • Pridaux, E. 1920. Name for the positive nucleus. Nature 106: 567.

    Article  Google Scholar 

  • Primakoff, Henry. 1938. On the superposition of nuclear forces. Physical Review 53: 938–939.

    Google Scholar 

  • Proca, Alexandru, and Samuel Goudsmit. 1939. Sur la masse du mésoton et des autres particules élémentaires. Comptes Rendus 208: 884–886.

    MATH  Google Scholar 

  • Rayner-Canham, Geoff, and Zheng Zheng. 2008. Naming elements after scientists: An account of a controversy. Foundations of Chemistry 10: 13–18.

    Article  Google Scholar 

  • Recami, Erasmo. 2017. Majorana, the neutron, and the neutrino: Some elementary historical memoirs. Hadronic Journal 40: 149–186. http://arxiv.org/abs/1712.02209 [physics.gen-ph].

  • Rinne, Friedrich. 1917. Zur Leptonenkunde als Feinbaulehre der Stoffe. Naturwissenschaften 5: 49–56.

    Article  Google Scholar 

  • Romer, Alfred. 1997. Proton or prouton? Rutherford and the depths of the atom. American Journal of Physics 65: 707–716.

    Article  Google Scholar 

  • Roqué, Xavier. 1997. The manufacture of the positron. Studies in History and Philosophy of Modern Physics 28: 73–129.

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenfeld, Léon. 1948. Nuclear forces. Amsterdam: North Holland.

    Google Scholar 

  • Rosenfeld, Léon. 1950. Problems in nuclear forces. In Les Particules Élémentaires: Rapports et Discussions, ed. R. Stoops, 179–192. Brussels: Coudenberg.

    Google Scholar 

  • Roy, S.C., and Rajinder Singh. 2015. D. M. Bose and cosmic ray research. Indian Journal of History of Science 50: 438–455.

    Article  Google Scholar 

  • Rutherford, Ernest. 1920. Nuclear constitution of atoms. Proceedings of the Royal Society A 97: 374–400.

    Google Scholar 

  • Sakata, Shoichi, and Yasutaka Tanikawa. 1940. The spontaneous disintegration of the neutral mesotron (neutretto). Physical Review 57: 548.

    Article  Google Scholar 

  • Schweber, Silvan S. 1994. QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga. Princeton: Princeton University Press.

    Book  MATH  Google Scholar 

  • Segré, Emilio. 1970. Enrico Fermi: Physicist. Chicago: University of Chicago Press.

    Google Scholar 

  • Serber, Robert. 1938. On the dynaton theory of nuclear forces. Physical Review 53: 211.

    Google Scholar 

  • Serber, Robert. 1994. Peaceful pastimes. Annual Review of Nuclear and Particle Science 44: 1–26.

    Article  Google Scholar 

  • Seymour, D.W., and William F. G. Swann. 1954. A determination of the μ-mesotron rest lifetime and a verification of the relativistic expression for variation of lifetime with momentum. Journal of the Franklin Institute 258: 277–287.

    Article  Google Scholar 

  • Shapiro, Maurice M. 1953. International congress on cosmic radiation at Bagneres de Bigotte. Science 118 (1953): 701–707.

    Article  Google Scholar 

  • Shonka, Francis R. 1939. New evidence for the existence of penetrating neutral particles. Physical Review 55: 24–27.

    Article  MATH  Google Scholar 

  • Singh, Rajinder. 2009. Homi J. Bhabha and Niels Bohr. Current Science 97 (4): 583–587.

    Google Scholar 

  • SNL. 1933a. “Positron” confirmed as new particle of matter. Science News Letter 23 (25 February): 115 and 124.

  • SNL. 1933b. Positron formally introduced; negative proton predicted. Science News Letter 23 (25 March): 179.

    Google Scholar 

  • SNL. 1933c. Oreston suggested as name for new positive electron. Science News Letter 24 (8 July): 24.

    Google Scholar 

  • SNL. 1934. New element will complicate chemistry. Science News Letter 25 (24 March): 179.

    Google Scholar 

  • SNL. 1935. Einstein’s relativity theory to be tested in Sun’s eclipse. Science News Letter 28 (16 November): 309.

    Google Scholar 

  • SNL. 1938. High altitude research finds evidence for neutretto. Science News Letter 34 (3 December): 357.

    Google Scholar 

  • Soddy, Frederick. 1920. Name for the positive nucleus. Nature 106: 502–503.

    Article  Google Scholar 

  • Solvay. 1950. In Les Particules Élémentaires: Rapports et Discussions, ed. R. Stoops. Brussels: Coudenberg.

    Google Scholar 

  • Spradley, Joseph L. 1985. Particle physics in prewar Japan. American Scientist 73: 563–569.

    Google Scholar 

  • Steinberger, Jack, W. Panofsky, and J. Steller. 1950. Evidence for the production of neutral mesons by photons. Physical Review 78: 802–805.

    Article  Google Scholar 

  • Stuewer, Roger H. 1986. The naming of the deuteron. American Journal of Physics 54: 206–218.

    Article  Google Scholar 

  • Stuewer, Roger H. 2018. The age of innocence: Nuclear physics between the first and second world wars. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Sutherland, William. 1899. Cathode, Lenard, and Röntgen rays. Philosophical Magazine 47: 269–284.

    Google Scholar 

  • Swann, William F. G. 1938. What are cosmic-rays? Journal of the Franklin Institute 226: 757–796.

    Article  MATH  Google Scholar 

  • Thibaud, Jean. 1946. Le rayonnement émis par les substances radioactives à désintégration β. Comptes Rendus 223: 984–985.

    Google Scholar 

  • Thomas, William. 2012. Strategies of detection: Interpretive methods in experimental particle physics, 1930–1950. Historical Studies in the Natural Sciences 42: 389–431.

    Article  Google Scholar 

  • Tiomno, Jayme, and John A. Wheeler. 1949. Energy spectrum of electrons from meson decay. Reviews of Modern Physics 21: 144–152.

    Article  MATH  Google Scholar 

  • Walker, Charles T., and Glen A. Slack. 1970. Who named the -ON’s? American Journal of Physics 38: 1380–1389.

    Article  Google Scholar 

  • Weiss, Richard J., ed. 1999. The discovery of anti-matter: The autobiography of Carl David Anderson. Singapore: World Scientific.

    Google Scholar 

  • Wentzel, Gregor. 1950. μ-Pair theories and the π-meson. Physical Review 79: 710–717.

    Article  MATH  Google Scholar 

  • Wheeler, John A. 1949. Some consequences of the electromagnetic interaction between μ-mesons and nuclei. Reviews of Modern Physics 21: 133–143.

    Article  Google Scholar 

  • Whitmore, Charles E. 1955. The language of science. Scientific Monthly 80: 185–191.

    Google Scholar 

  • Wildman, E.A. 1933. Nomenclature of the electron. Science 78: 191.

    Article  Google Scholar 

  • Witmer, Enos, and Martin A. Pomerantz. 1938. Evidence for the existence of a new elementary particle. Journal of Applied Physics 9: 746–753.

    Article  Google Scholar 

  • Wright, C.S. 1926. Cosmic rays. Nature 117: 54–56.

    Article  Google Scholar 

  • Yukawa, Hideki, and Shoichi Sakata. 1939a. The mass and the lifetime of the mesotron. Proceedings of the Physico-Mathematical Society of Japan 20: 319–340.

    MATH  Google Scholar 

  • Yukawa, Hideki, and Shoichi Sakata. 1939b. Mass and mean life-time of the meson. Nature 143: 761–762.

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges helpful and critical comments from two reviewers to an earlier version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Kragh.

Ethics declarations

Conflict of interest

The author states that there is no conflict of interest.

Additional information

Communicated by Olivier Darrigol.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kragh, H. A terminological history of early elementary particle physics. Arch. Hist. Exact Sci. 77, 73–120 (2023). https://doi.org/10.1007/s00407-022-00299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-022-00299-2

Navigation