Skip to main content
Log in

Classical limit of real Dirac theory: Quantization of relativistic central field orbits

  • Part I. Invited Papers Dedicated To David Hestenes
  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The classical limit of real Dirac theory is derived as the lowest-order contribution in\(\mathchar'26\mkern-10mu\lambda = \hslash /mc\) of a new, exact polar decomposition. The resulting classical spinor equation is completely integrated for stationary solutions to arbitrary central fields. Imposing single-valuedness on the covering space of a bivector-valued extension to these classical solutions, orbital angular momentum, energy, and spin directions are quantized. The quantization of energy turns out to yield the WKB formula of Bessey, Uhlenbeck, and Good. It is demonstrated that the success of Sommerfeld's old quantization is due to a complete mutual cancellation between wave mechanical half-integers and spin in the particular case of the relativistic Kepler problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hestenes, “Observables, operators, and complex numbers in the Dirac theory,”J. Math. Phys. 16, 556–572 (1975).

    Google Scholar 

  2. D. Hestenes, “The Zitterbewegung interpretation of quantum mechanics,”Found. Phys. 20, 1213–1232 (1990).

    Google Scholar 

  3. D. Hestenes, “A unified language for mathematics and physics,” inClifford Algebras and Their Applications in Mathematical Physics, J. S. R. Chisholm and A. K. Common (eds.) (Reidel, Dordrecht, 1986), pp. 1–24.

    Google Scholar 

  4. D. Hestenes and G. Sobczyk,Clifford Algebra to Geometric Calculus (Reidel, Dordrecht, 1984).

    Google Scholar 

  5. D. Hestenes, “Real spinor fields,”J. Math. Phys. 8, 798–808 (1967), Section 4.

    Google Scholar 

  6. D. Hestenes, “Local observables in the Dirac theory,”J. Math. Phys. 14, 893–905 (1973), Section 5.

    Google Scholar 

  7. G. Lochak, “Wave equation for a magnetic monopole,”Int. J. Theor. Phys. 24, 1019–1050 (1985), Section 12.

    Google Scholar 

  8. J. Yvon, “Equations de Dirac-Madelung,”J. Phys. Radium 1, 18–24 (1940).

    Google Scholar 

  9. T. Takabayashi, “Relativistic hydrodynamics of the Dirac matter,”Prog. Theor. Phys. Suppl. 4, 1–80 (1957).

    Google Scholar 

  10. A Proca, “Sur la méchanique spinorielle du point chargé,”J. Phys. Radium 17, 81–84 (1956).

    Google Scholar 

  11. D. Hestenes, “Proper dynamics of a rigid point particle,”J. Math. Phys. 15, 1778–1786 (1974).

    Google Scholar 

  12. D. Bohm and B. J. Hiley, “Measurement understood through the quantum potential approach,”Found. Phys. 14, 255–274 (1984).

    Google Scholar 

  13. H. C. Lee, “On plane factorizations of pseudo-Euclidean rotations,”Qt. J. Math. 15, 7–10 (1944).

    Google Scholar 

  14. D. Hestenes,New Foundations for Classical Mechanics (Reidel, Dordrecht, 1986), pp. 460–462.

    Google Scholar 

  15. V. P. Maslov and M. V. Fedoriuk,Semiclassical Approximation in Quantum Mechanics (Reidel, Dordrecht, 1981), p. 78.

    Google Scholar 

  16. R. Abraham and J. E. Marsden,Foundations of Mechanics (Benjamin/Cummings, Reading, Massachusetts, 1980), 2nd edn., p. 95.

    Google Scholar 

  17. J. O. Hirschfelder and K. T. Tang, “Quantum mechanical streamlines. IV. Collision of two spheres with square potential wells or barriers,”J. Chem. Phys. 65, 470–486 (1976).

    Google Scholar 

  18. J. B. Keller, “Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems,”Ann. Phys. (N.Y.) 4, 180–188 (1958).

    Google Scholar 

  19. B. Ju. Sternin, “On quantization conditions in the complex theory of Maslov's canonical operator. The complex theory of Fourier integral operators,”Sov. Math. Dokl. 18, 250–254 (1977).

    Google Scholar 

  20. D. Hestenes, “Quantum mechanics from self-interaction,”Found. Phys. 15, 63–87 (1985).

    Google Scholar 

  21. R. H. Good, Jr., “The generalization of the WKB method to radial wave equations,”Phys. Rev. 90, 131–137 (1953).

    Google Scholar 

  22. A. Sommerfeld, “Zur Quantentheorie der Spekttrallinien,”Ann. Phys. (Leipzig) 51, 1–94 (1916), see pp. 52–54.

    Google Scholar 

  23. S. I. Rubinow and J. B. Keller, “Asymptotic solution of the Dirac equation,”Phys. Rev. 131, 2789–2796 (1963).

    Google Scholar 

  24. K. Rafanelli and R. Schiller, “Classical motions of spin-1/2 particles,”Phys. Rev. B 135, 279–281 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krüger, H. Classical limit of real Dirac theory: Quantization of relativistic central field orbits. Found Phys 23, 1265–1288 (1993). https://doi.org/10.1007/BF01883679

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01883679

Keywords

Navigation