Skip to main content
Log in

Bell Inequalities, Experimental Protocols and Contextuality

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In this paper we give additional arguments in favor of the point of view that the violation of Bell, CHSH and CH inequalities is not due to a mysterious non locality of nature. We concentrate on an intimate relation between a protocol of a random experiment and a probabilistic model which is used to describe it. We discuss in a simple way differences between attributive joint probability distributions and generalized joint probability distributions of outcomes from distant experiments which depend on how the pairing of these outcomes is defined. We analyze in detail experimental protocols implied by local realistic and stochastic hidden variable models and show that they are incompatible with the protocols used in spin polarization correlation experiments. We discuss also the meaning of “free will”, differences between quantum and classical filters, contextuality of Kolmogorov models, contextuality of quantum theory (QT) and show how this contextuality has to be taken into account in probabilistic models trying to explain in an intuitive way the predictions of QT. The long range imperfect correlations between the clicks of distant detectors can be explained by partially preserved correlations between the signals created by a source. These correlations can only be preserved if the clicks are produced in a local and deterministic way depending on intrinsic parameters describing signals and measuring devices in the moment of the measurement. If an act of a measurement was irreducibly random they would be destroyed. It seems to indicate that QT may be in fact emerging from some underlying more detailed theory of physical phenomena. If this was a case then there is a chance to find in time series of experimental data some fine structures not predicted by QT. This would be a major discovery because it would not only prove that QT does not provide a complete description of individual physical systems but it would prove that it is not predictably complete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1965)

    Google Scholar 

  2. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  3. Brunner, N. et al.: Fifty years of Bell’s theorem. J. Phys. A (2014). doi:10.1088/1751-8113/47/42/420301

  4. Gisin, N.: Quantum nonlocality: how does nature do it? Science 326, 1357–1358 (2009)

    Article  ADS  Google Scholar 

  5. Gisin, N.: Non-realism: Deep thought or a soft option? Found. Phys. 42, 80–85 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. Accardi, L.: Topics in quantum probability. Phys. Rep. 77, 169–192 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  7. Accardi, L.: Some loopholes to save quantum nonlocality. AIP Conf. Proc. 750, 1–19 (2005)

    MathSciNet  ADS  Google Scholar 

  8. Accardi, L., Uchiyama, S.: Universality of the EPR-chameleon model. AIP Conf. Proc. 962, 15–27 (2007)

    MathSciNet  ADS  Google Scholar 

  9. Aerts, D.: A possible explanation for the probabilities of quantum mechanics. J. Math. Phys. 27, 202–209 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  10. Atmanspacher, H., Primas, H.: Epistemic and onctic quantum realities. AIP Conf. Proc. 750, 49–62 (2005)

    MathSciNet  ADS  Google Scholar 

  11. De Baere, W.: On conditional Bell inequalities and quantum mechanics. Lett. Nuovo Cimento 40, 488 (1984)

    Article  Google Scholar 

  12. Fine, A.: Hidden variables, joint probability and the Bell inequalities. Phys. Rev. Lett. 48, 291 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  13. Fine, A.: Joint distributions, quantum correlations, and commuting observables. J. Math. Phys. 23, 1306–1310 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  14. Hess, K., Philipp, W.: A possible loophole in the Bell’s theorem and the problem of decidability between the views of Einstein and Bohr. Proc. Natl. Acad. Sci. 98, 14228 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. Hess, K., Philipp, W.: Bell’s theorem: critique of proofs with and without inequalities. AIP Conf. Proc. 750, 150 (2005)

    MathSciNet  ADS  Google Scholar 

  16. Hess, K., Michielsen, K., De Raedt, H.: Possible experience: from Boole to Bell. Europhys. Lett. 87, 60007 (2009)

    Article  ADS  Google Scholar 

  17. Hess, K., De Raedt, H., Michielsen, K.: Hidden assumptions in the derivation of the theorem of Bell. Phys. Scr. T151, 014002 (2012)

    Article  ADS  Google Scholar 

  18. Hess, H.: Einstein Was Right!. Pan Stanford, Boca Raton (2014)

    Book  Google Scholar 

  19. Khrennikov, A.Yu.: Interpretation of Probability. VSP, Utrecht (1999)

  20. Khrennikov, A.Yu., Volovich, V.: Quantum non-locality, EPR model and Bell’s theorem. In: Semikhatov A. et al. (eds) Proceedings 3rd International Sakharov Conference on Physics, 260–267. World Scientific, Singapore (2003).

  21. Khrennikov, A.Yu.: Bell’s inequality: nonlocality, “death of reality“, or incompatibility of random variables. AIP 962, 121 (2007)

  22. Khrennikov, A. Yu.: Violation of Bell’s inequality and nonKolmogorovness. AIP Conf. Proc. 1101, 86 (2009)

  23. Khrennikov, A. Yu.: Bell’s inequality: physics meets probability. Inf. Sci. 179, 492–504 (2009)

  24. Khrennikov, A. Yu.: Contextual Approach to Quantum Formalism. Springer, Dortrecht (2009)

  25. Khrennikov, A. Yu.: Ubiquitous Quantum Structure. Springer, Berlin (2010)

  26. Khrennikov, A. Yu.: CHSH inequality: Quantum probabilities as classical conditional probabilities. Preprint: arXiv:1406.4886 [quant-ph] (2014).

  27. Kracklauer, A.F.: Bell’s inequalities and EPR-B experiments are they disjoint? AIP Conf. Proc. 750, 219–227 (2005)

    MathSciNet  ADS  Google Scholar 

  28. Kupczynski, M.: New test of completeness of quantum mechanics. Preprint: IC/84/242 (1984).

  29. Kupczynski, M.: On some new tests of completeness of quantum mechanics. Phys. Lett. A 116, 417–419 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  30. Kupczynski, M.: Pitovsky model and complementarity. Phys. Lett. A 121, 51–53 (1987)

    Article  ADS  Google Scholar 

  31. Kupczynski, M.: Bertrand’s paradox and Bell’s inequalities. Phys. Lett. A 121, 205–207 (1987)

    Article  ADS  Google Scholar 

  32. Kupczynski, M.: On the completeness of quantum mechanics. Preprint: arXiv:quant-ph/028061 (2002)

  33. Kupczynski, M.: Entanglement and Bell inequalities. J. Russ. Laser Res. 26, 514–523 (2005)

    Article  Google Scholar 

  34. Kupczynski, M.: Seventy years of the EPR paradox. AIP Conf. Proc. 861, 516–523 (2006)

    ADS  Google Scholar 

  35. Kupczynski, M.: EPR paradox, locality and completeness of quantum. AIP Conf. Proc. 962, 274–285 (2007)

    MathSciNet  ADS  Google Scholar 

  36. Kupczynski, M.: Entanglement and quantum nonlocality demystified. AIP Conf. Proc. 1508, 253–264 (2012)

    ADS  Google Scholar 

  37. Kupczynski, M,: Operational approach to the entanglement. Preprint: arXiv:1208.6532 [quant-ph] (2012).

  38. Kupczynski, M.: Causality and local determinism versus quantum nonlocality. J. Phys. 504, 012015 (2014). doi:10.1088/1742-6596/504/1/012015

    Google Scholar 

  39. De la Peña, L., Cetto, A.M., Brody, T.A.: On hidden variable theories and Bell’s inequality. Lett. Nuovo Cimento 5, 177 (1972)

    Article  MathSciNet  Google Scholar 

  40. De Muynck, V.M., De Baere, W., Martens, H.: Interpretations of quantum mechanics, joint measurement of incompatible observables and counterfactual definiteness. Found. Phys. 24, 1589–1664 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  41. De Muynck, M.: Foundations of Quantum Mechanics. Kluver Academic, Dordrecht (2002)

    MATH  Google Scholar 

  42. Nieuwenhuizen, T.M.: Where Bell went wrong. AIP Conf. Proc. 1101, 127–133 (2009)

    MathSciNet  ADS  Google Scholar 

  43. Nieuwenhuizen, T.M.: Is the contextuality loophole fatal for the derivation of Bell inequalities. Found. Phys. 41, 580 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Pitovsky, I.: Deterministic model of spin statistics. Phys. Rev. D 27, 2316–2326 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  45. Pitovsky, I.: George Boole ’s conditions of possible experience and the quantum puzzle. Br it.J.Phil.Sci. 45, 95 (1994)

    Article  Google Scholar 

  46. De Raedt, H., Hess, K., Michielsen, K.: Extended Boole-Bell inequalities applicable to quantum theory. J. Comp. Theor. Nanosci. 8, 10119 (2011)

    Google Scholar 

  47. Dzhafarov, E.N., Kujala, J.V.: Selectivity in probabilistic causality: Where psychology runs into quantum physics. J. Math. Psych. 56, 54–63 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  48. Dzhafarov, E.N., Kujala, J.V.: All-possible-couplings approach to measuring probabilistic Context. PLoS One 8, e61712 (2013). doi:10.1371/journal.pone.0061712

    Article  ADS  Google Scholar 

  49. Dzhafarov, E.N., Kujala, J.V.: No-forcing and no-matching theorems for classical probability applied to quantum mechanics. Found. Phys. 44, 248–265 (2014)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. Michielsen, K., Jin, F., De Raedt, H.: Event-based corpuscular model for quantum optics experiments. J. Comp. Theor. Nanosci. 8, 1052 (2011)

    Article  Google Scholar 

  51. De Raedt, H., Jin, F., Michielsen, K.: Discrete-event simulation of neutron interferometry experiments. AIP Conf. Proc. 1508, 172–186 (2012)

    ADS  Google Scholar 

  52. De Raedt, H., Jin, F., and Michielsen, K.: Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments, In: Roychoudhuri, C. et al. (eds): The Nature of Light: What are Photons?V. Proc. of SPIE. Vol. 8832, 88321N (2013).

  53. Michielsen, K., De Raedt, H.: Event-based simulation of quantum physics experiments. Int. J. Mod. Phys. C 25, 1430003–1430066 (2014)

    Article  ADS  Google Scholar 

  54. Żukowski, M., Brukner, Č.: Quantum non-locality–it ain’t necessarily so. J. Phys. A 47, 424009 (2014). doi:10.1088/1751-8113/47/42/424009

    Article  MathSciNet  Google Scholar 

  55. Gill R.D.: Statistics, Causality and Bell’s Theorem. Preprint: arXiv:1207.5103v5 [stat.AP].

  56. Bohr, N.: Essays 1958–1962 on Atomic Physics and Human Knowledge. Wiley, New York (1963)

    MATH  Google Scholar 

  57. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MATH  MathSciNet  Google Scholar 

  58. Bertrand, J.: Calcul des Probabilités. Gauthier-Villars, Paris (1889)

    MATH  Google Scholar 

  59. Gnedenko, B.V.: The Theory of Probability. Chelsea, New York (1962)

    MATH  Google Scholar 

  60. Pascazio, S.: Time and Bell-type inequalities. Phys. Lett. A. 118, 47–53 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  61. Larsson, J.-A., Gill, R.D.: Bell’s inequality and the coincidence-time loophole. Europhys. Lett. 67, 707–713 (2004)

    Article  ADS  Google Scholar 

  62. Larsson, J.-A., Giustina, M., Kofler, J., Wittman, B., Ursin, R. and Ramelow S.: Bell violation with entangled photons, free of the coincidence-time loophole. Preprint: arXiv:1309.0712v2 [quant-ph] (2014).

  63. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526–535 (1974)

    Article  ADS  Google Scholar 

  64. Kupczynski, M., De Raedt, H.: Breakdown of statistical inference from some random experiment. Preprint: arXiv:1410.7424 [physics.data-an]

  65. Allahverdyan, A.E., Balian, R., Nieuwenhuizen, T.M.: Understanding quantum measurement from the solution of dynamical models. Phys. Rep. 525, 1–166 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  66. Gill, R.D.: Time, Finite Statistics, and Bell’s Fifth Position. In: Khrennikov, A.Y. (ed.) Proc. of Foundations of Probability and Physics, pp. 179–206. Växjö University Press, Växjö (2003)

    Google Scholar 

  67. Gill, R.D., Weihs, G., Zeilinger, A., Żukowski, M.: No time loophole in Bell’s theorem: the Hess-Philipp model is nonlocal. Proc. Natl. Acad. Sci. USA 99, 14632–14635 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. Gill, R.D., Weihs, G., Zeilinger, A., Żukowski, M.: Comment on exclusion of time in the theorem of Bell. Europhys. Lett. 61, 282–283 (2003)

    Article  ADS  Google Scholar 

  69. Gill, R.D.: Better Bell inequalities (passion at a distance). IMS Lect. Notes Monogr. Ser. 55, 135–148 (2007)

    Google Scholar 

  70. Eberhard, P.H.: Background Level and Counter Efficiencies Required for a Loophole-Free Einstein-Podolsky-Rosen Experiment. Phys. Rev. A 47, R747–R750 (1993)

    Article  ADS  Google Scholar 

  71. Ballentine, L.E.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  72. Einstein, A.: In: Schilpp, P.A. (ed.) Albert Einstein:Philosopher-Scientist. Harper and Row, New York (1949)

  73. Kupczynski, M.: Is Hilbert space language too rich. Int. J. Theor. Phys. 79, 319–43(1973), reprinted. In: Hooker, C.A (ed). Physical Theory as Logico-Operational Structure, 89–113. Reidel, Dordrecht (1978).

  74. Kupczynski, M.: Tests for the purity of the initial ensemble of states in scattering experiments. Lett. Nuovo Cimento 11, 121–124 (1974)

    Article  MathSciNet  Google Scholar 

  75. Kupczynski, M.: On some important statistical tests. Riv. Nuovo Cimento 7, 215–227 (1977)

    Article  MathSciNet  Google Scholar 

  76. Kupczynski, M.: Is quantum theory predictably complete? Phys. Scr. T135, 014005 (2009). doi:10.1088/0031-8949/2009/T135/014005

    Article  ADS  Google Scholar 

  77. Kupczynski, M.: Time series, stochastic processes and completeness of quantum theory. AIP. Conf. Proc. 1327, 394–400 (2011)

    ADS  Google Scholar 

  78. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis Forecasting and Control. Wiley, Hoboken (2008)

    MATH  Google Scholar 

Download references

Acknowledgments

I am grateful to UQO for a travel Grant and to Andrei Khrennikov for his hospitality and for the invitation to give a talk during this interesting QTPA conference.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Kupczynski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kupczynski, M. Bell Inequalities, Experimental Protocols and Contextuality. Found Phys 45, 735–753 (2015). https://doi.org/10.1007/s10701-014-9863-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9863-4

Keywords

Navigation